Cell and circuit origins of fast network oscillations in the mammalian main olfactory bulb
Abstract
Neural synchrony generates fast network oscillations throughout the brain, including the main olfactory bulb (MOB), the first processing station of the olfactory system. Identifying the mechanisms synchronizing neurons in the MOB will be key to understanding how network oscillations support the coding of a high-dimensional sensory space. Here, using paired recordings and optogenetic activation of glomerular sensory inputs in MOB slices, we uncovered profound differences in principal mitral cell (MC) vs. tufted cell (TC) spike-time synchrony: TCs robustly synchronized across fast- and slow-gamma frequencies, while MC synchrony was weaker and concentrated in slow-gamma frequencies. Synchrony among both cell types was enhanced by shared glomerular input but was independent of intraglomerular lateral excitation. Cell-type differences in synchrony could also not be traced to any difference in the synchronization of synaptic inhibition. Instead, greater TC than MC synchrony paralleled the more periodic firing among resonant TCs than MCs and emerged in patterns consistent with densely synchronous network oscillations. Collectively, our results thus reveal a mechanism for parallel processing of sensory information in the MOB via differential TC vs. MC synchrony, and further contrast mechanisms driving fast network oscillations in the MOB from those driving the sparse synchronization of irregularly-firing principal cells throughout cortex.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.
Article and author information
Author details
Funding
National Institue on Deafness and Other Communication Disorders (R01DC016560)
- Nathan N Urban
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were completed in compliance with the guidelines established by the Institutional Animal Care and Use Committee of the University of Pittsburgh (protocol #18103723).
Copyright
© 2021, Burton & Urban
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 773
- views
-
- 135
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.
-
- Neuroscience
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.