ZAF, the first open source fully automated feeder for aquatic facilities
Abstract
In the past few decades, aquatic animals have become popular model organisms in biology, spurring a growing need for establishing aquatic facilities. Zebrafish are widely studied and relatively easy to culture using commercial systems. However, a challenging aspect of maintaining aquatic facilities is animal feeding, which is both time- and resourceconsuming. We have developed an open-source fully automatic daily feeding system, Zebrafish Automatic Feeder (ZAF). ZAF is reliable, provides a standardized amount of food to every tank, is cost-efficient and easy to build. The advanced version, ZAF+, allows for the precise control of food distribution as a function of fish density per tank, and has a user-friendly interface. Both ZAF and ZAF+ are adaptable to any laboratory environment and facilitate the implementation of aquatic colonies. Here we provide all blueprints and instructions for building the mechanics, electronics, fluidics, as well as to setup the control software and its user-friendly graphical interface. Importantly, the design is modular and can be scaled to meet different user needs. Furthermore, our results show that ZAF and ZAF+ do not adversely affect zebrafish culture, enabling fully automatic feeding for any aquatic facility.
Data availability
We provide all instructions to build the hardware and all code for the software in the wiki:github.com/royerlab/ZAF
Article and author information
Author details
Funding
Chan Zuckerberg Biohub (N/A)
- Loïc Alain Royer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This research was done under a protocol reviewed and approved by the institutional animal care and use committee (IACUC) of University of California San Francisco (UCSF).
Copyright
© 2021, Lange et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,147
- views
-
- 219
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.
-
- Developmental Biology
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.