Abstract

In the past few decades, aquatic animals have become popular model organisms in biology, spurring a growing need for establishing aquatic facilities. Zebrafish are widely studied and relatively easy to culture using commercial systems. However, a challenging aspect of maintaining aquatic facilities is animal feeding, which is both time- and resourceconsuming. We have developed an open-source fully automatic daily feeding system, Zebrafish Automatic Feeder (ZAF). ZAF is reliable, provides a standardized amount of food to every tank, is cost-efficient and easy to build. The advanced version, ZAF+, allows for the precise control of food distribution as a function of fish density per tank, and has a user-friendly interface. Both ZAF and ZAF+ are adaptable to any laboratory environment and facilitate the implementation of aquatic colonies. Here we provide all blueprints and instructions for building the mechanics, electronics, fluidics, as well as to setup the control software and its user-friendly graphical interface. Importantly, the design is modular and can be scaled to meet different user needs. Furthermore, our results show that ZAF and ZAF+ do not adversely affect zebrafish culture, enabling fully automatic feeding for any aquatic facility.

Data availability

We provide all instructions to build the hardware and all code for the software in the wiki:github.com/royerlab/ZAF

Article and author information

Author details

  1. Merlin Lange

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    merlin.lange@czbiohub.org
    Competing interests
    Merlin Lange, A patent application has been filed covering the reported feeders. (number 63/162,299).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0534-4374
  2. AhmetCan Solak

    Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    AhmetCan Solak, A patent application has been filed covering the reported feeders. (number 63/162,299).
  3. Shruthi Vijay Kumar

    Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Hirofumi Kobayashi

    Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Bin Yang

    Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Loïc Alain Royer

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    loic.royer@czbiohub.org
    Competing interests
    Loïc Alain Royer, A patent application has been filed covering the reported feeders. (number 63/162,299).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9991-9724

Funding

Chan Zuckerberg Biohub (N/A)

  • Loïc Alain Royer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This research was done under a protocol reviewed and approved by the institutional animal care and use committee (IACUC) of University of California San Francisco (UCSF).

Copyright

© 2021, Lange et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,886
    views
  • 201
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Merlin Lange
  2. AhmetCan Solak
  3. Shruthi Vijay Kumar
  4. Hirofumi Kobayashi
  5. Bin Yang
  6. Loïc Alain Royer
(2021)
ZAF, the first open source fully automated feeder for aquatic facilities
eLife 10:e74234.
https://doi.org/10.7554/eLife.74234

Share this article

https://doi.org/10.7554/eLife.74234

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Roger Huerlimann, Natacha Roux ... Timothy Ravasi
    Research Article

    Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.