Satellite glia modulate sympathetic neuron survival, activity, and autonomic function

Abstract

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.

Data availability

All data generated or analysed during this study are included in the manuscript (Results, Materials and Methods, and Figure Legends).

Article and author information

Author details

  1. Aurelia A Mapps

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7956-2465
  2. Erica Boehm

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Corinne Beier

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0698-7219
  4. William T Keenan

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer Langel

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Liu

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael B Thomsen

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samer Hattar

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-9525
  9. Haiqing Zhao

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4275-9843
  10. Emmanouil Tampakakis

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    rkuruvilla@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-675X

Funding

National Institutes of Health (NS073751)

  • Rejji Kuruvilla

National Institutes of Health (NS107342)

  • Rejji Kuruvilla

National Science Foundation (DGE-1746891)

  • Aurelia A Mapps

National Institutes of Health (DC016065)

  • Haiqing Zhao

National Institutes of Health (EY027202)

  • Haiqing Zhao

National Institutes of Health (ZIAMH002964)

  • Samer Hattar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures relating to animal care and treatment conformed to The Johns Hopkins University Animal Care and Use Committee (ACUC, protocol#MO19A488) and NIH guidelines.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,821
    views
  • 430
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurelia A Mapps
  2. Erica Boehm
  3. Corinne Beier
  4. William T Keenan
  5. Jennifer Langel
  6. Michael Liu
  7. Michael B Thomsen
  8. Samer Hattar
  9. Haiqing Zhao
  10. Emmanouil Tampakakis
  11. Rejji Kuruvilla
(2022)
Satellite glia modulate sympathetic neuron survival, activity, and autonomic function
eLife 11:e74295.
https://doi.org/10.7554/eLife.74295

Share this article

https://doi.org/10.7554/eLife.74295

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.