Satellite glia modulate sympathetic neuron survival, activity, and autonomic function

Abstract

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.

Data availability

All data generated or analysed during this study are included in the manuscript (Results, Materials and Methods, and Figure Legends).

Article and author information

Author details

  1. Aurelia A Mapps

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7956-2465
  2. Erica Boehm

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Corinne Beier

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0698-7219
  4. William T Keenan

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer Langel

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Liu

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael B Thomsen

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samer Hattar

    Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-9525
  9. Haiqing Zhao

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4275-9843
  10. Emmanouil Tampakakis

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    rkuruvilla@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-675X

Funding

National Institutes of Health (NS073751)

  • Rejji Kuruvilla

National Institutes of Health (NS107342)

  • Rejji Kuruvilla

National Science Foundation (DGE-1746891)

  • Aurelia A Mapps

National Institutes of Health (DC016065)

  • Haiqing Zhao

National Institutes of Health (EY027202)

  • Haiqing Zhao

National Institutes of Health (ZIAMH002964)

  • Samer Hattar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moses V Chao, New York University Langone Medical Center, United States

Ethics

Animal experimentation: All procedures relating to animal care and treatment conformed to The Johns Hopkins University Animal Care and Use Committee (ACUC, protocol#MO19A488) and NIH guidelines.

Version history

  1. Preprint posted: September 23, 2021 (view preprint)
  2. Received: September 28, 2021
  3. Accepted: August 22, 2022
  4. Accepted Manuscript published: August 23, 2022 (version 1)
  5. Accepted Manuscript updated: August 25, 2022 (version 2)
  6. Version of Record published: August 31, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,645
    views
  • 412
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurelia A Mapps
  2. Erica Boehm
  3. Corinne Beier
  4. William T Keenan
  5. Jennifer Langel
  6. Michael Liu
  7. Michael B Thomsen
  8. Samer Hattar
  9. Haiqing Zhao
  10. Emmanouil Tampakakis
  11. Rejji Kuruvilla
(2022)
Satellite glia modulate sympathetic neuron survival, activity, and autonomic function
eLife 11:e74295.
https://doi.org/10.7554/eLife.74295

Share this article

https://doi.org/10.7554/eLife.74295

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.