A nanocompartment system contributes to defense against oxidative stress in Mycobacterium tuberculosis

  1. Katie A Lien
  2. Kayla Dinshaw
  3. Robert J Nichols
  4. Caleb Cassidy-Amstutz
  5. Matthew Knight
  6. Rahul Singh
  7. Lindsay D Eltis Prof.
  8. David F Savage
  9. Sarah A Stanley  Is a corresponding author
  1. University of California, Berkeley, United States
  2. The University of British Columbia, Canada

Abstract

Encapsulin nanocompartments are an emerging class of prokaryotic protein-based organelle consisting of an encapsulin protein shell that encloses a protein cargo. Genes encoding nanocompartments are widespread in bacteria and archaea, and recent works have characterized the biochemical function of several cargo enzymes. However, the importance of these organelles to host physiology is poorly understood. Here, we report that the human pathogen Mycobacterium tuberculosis (Mtb) produces a nanocompartment that contains the dye-decolorizing peroxidase DyP. We show that this nanocompartment is important for the ability of Mtb to resist oxidative stress in low pH environments, including during infection of host cells and upon treatment with a clinically relevant antibiotic. Our findings are the first to implicate a nanocompartment in bacterial pathogenesis and reveal a new mechanism that Mtb uses to combat oxidative stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Katie A Lien

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kayla Dinshaw

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert J Nichols

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8476-0554
  4. Caleb Cassidy-Amstutz

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Knight

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rahul Singh

    The University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Lindsay D Eltis Prof.

    The University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. David F Savage

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0042-2257
  9. Sarah A Stanley

    School of Public Health and Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    sastanley@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4182-9048

Funding

Center for Emerging and Neglected Disease (Graduate Student Award)

  • Katie A Lien

National Institute of General Medical Sciences (R01GM129241)

  • David F Savage

National Institute of Allergy and Infectious Disease (1R01AI143722)

  • Sarah A Stanley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving the use of mice were approved by the University of California, Berkeley Institutional Animal Care and Use Committee (protocol no. R353-1113B). All protocols conform to federal regulations, the National Research Council's Guide for the Care and Use of Laboratory Animals, and the Public Health Service's Policy on Humane Care and Use of Laboratory Animals.

Copyright

© 2021, Lien et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,240
    views
  • 398
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katie A Lien
  2. Kayla Dinshaw
  3. Robert J Nichols
  4. Caleb Cassidy-Amstutz
  5. Matthew Knight
  6. Rahul Singh
  7. Lindsay D Eltis Prof.
  8. David F Savage
  9. Sarah A Stanley
(2021)
A nanocompartment system contributes to defense against oxidative stress in Mycobacterium tuberculosis
eLife 10:e74358.
https://doi.org/10.7554/eLife.74358

Share this article

https://doi.org/10.7554/eLife.74358

Further reading

    1. Microbiology and Infectious Disease
    Malik Zohaib Ali, Taru S Dutt ... Mercedes Gonzalez Juarrero
    Research Article

    The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa ––BPaS regimen––has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.

    1. Microbiology and Infectious Disease
    Nicholas J Hathaway, Isaac E Kim ... Jeffrey A Bailey
    Research Article

    Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13–11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.