Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses

  1. Stephanie Maynard
  2. Philippe Rostaing
  3. Natascha Schaefer
  4. Olivier Gemin
  5. Adrien Candat
  6. Andréa Dumoulin
  7. Carmen Villmann
  8. Antoine Triller
  9. Christian G Specht  Is a corresponding author
  1. Institut de Biologie de l'ENS (IBENS), PSL University, France
  2. University of Wuerzburg, Germany
  3. Inserm U1195, Université Paris-Saclay, France

Abstract

Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy (SR-CLEM). We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.

Data availability

Upon acceptance, all source data of this publication will be made available through a data repository.

Article and author information

Author details

  1. Stephanie Maynard

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7838-3676
  2. Philippe Rostaing

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Natascha Schaefer

    Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9743-1963
  4. Olivier Gemin

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3210-7876
  5. Adrien Candat

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Andréa Dumoulin

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Carmen Villmann

    Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1498-6950
  8. Antoine Triller

    Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7530-1233
  9. Christian G Specht

    Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Paris, France
    For correspondence
    christian.specht@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6038-7735

Funding

H2020 European Research Council (Plastinhib)

  • Antoine Triller

Agence Nationale de la Recherche (Synaptune)

  • Antoine Triller

Agence Nationale de la Recherche (Syntrack)

  • Antoine Triller

Labex (Memolife)

  • Antoine Triller

France Bio-Imaging

  • Antoine Triller

Deutsche Forschungsgemeinschaft (VI586)

  • Carmen Villmann

Fondation pour la Recherche Médicale (SPF201809007132)

  • Stephanie Maynard

Bavarian State Ministry of Science and the Arts and the University of Würzburg (Graduate School of Life Sciences (GSLS))

  • Natascha Schaefer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were in accordance with European Union guidelines and approved by the local veterinary authorities. Animals at IBENS were treated in accordance with the guidelines of the French Ministry of Agriculture and Direction Départementale des Services Vétérinaires de Paris (École Normale Supérieure, Animalerie des Rongeurs, license B 75-05-20). Procedures carried out at the Institute for Clinical Neurobiology were approved by the Veterinäramt der Stadt Würzburg and the Committee on the Ethics of Animal Experiments (Regierung von Unterfranken, Würzburg) and authorized under reference numbers 55.2-2531.01-09/14; 55.2.2-2532.2-949-31.

Copyright

© 2021, Maynard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie Maynard
  2. Philippe Rostaing
  3. Natascha Schaefer
  4. Olivier Gemin
  5. Adrien Candat
  6. Andréa Dumoulin
  7. Carmen Villmann
  8. Antoine Triller
  9. Christian G Specht
(2021)
Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses
eLife 10:e74441.
https://doi.org/10.7554/eLife.74441

Share this article

https://doi.org/10.7554/eLife.74441

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.