Early detection of cerebrovascular pathology and protective antiviral immunity by MRI

  1. Li Liu  Is a corresponding author
  2. Steve Dodd
  3. Ryan D Hunt
  4. Nikorn Pothayee
  5. Tatjana Atanasijevic
  6. Nadia Bouraoud
  7. Dragan Maric
  8. E Ashley Moseman
  9. Selamawit Gossa
  10. Dorian B McGavern
  11. Alan P Koretsky  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States
  2. Duke University School of Medicine, United States

Abstract

Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.

Data availability

The source data of this study wilb be available in Dryad (https://doi.org/10.5061/dryad.79cnp5hwp)

The following data sets were generated

Article and author information

Author details

  1. Li Liu

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    li.liu3@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2493-3086
  2. Steve Dodd

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan D Hunt

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikorn Pothayee

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tatjana Atanasijevic

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadia Bouraoud

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dragan Maric

    Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. E Ashley Moseman

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Selamawit Gossa

    Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dorian B McGavern

    Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan P Koretsky

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    koretskya@ninds.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8085-4756

Funding

the National Institute of Health

  • Alan P Koretsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Version history

  1. Received: October 5, 2021
  2. Preprint posted: October 22, 2021 (view preprint)
  3. Accepted: May 5, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Version of Record published: May 13, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 646
    views
  • 102
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Li Liu
  2. Steve Dodd
  3. Ryan D Hunt
  4. Nikorn Pothayee
  5. Tatjana Atanasijevic
  6. Nadia Bouraoud
  7. Dragan Maric
  8. E Ashley Moseman
  9. Selamawit Gossa
  10. Dorian B McGavern
  11. Alan P Koretsky
(2022)
Early detection of cerebrovascular pathology and protective antiviral immunity by MRI
eLife 11:e74462.
https://doi.org/10.7554/eLife.74462

Share this article

https://doi.org/10.7554/eLife.74462

Further reading

    1. Neuroscience
    John J Maurer, Alexandra Lin ... Shinjae Chung
    Research Article

    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.