Early detection of cerebrovascular pathology and protective antiviral immunity by MRI

  1. Li Liu  Is a corresponding author
  2. Steve Dodd
  3. Ryan D Hunt
  4. Nikorn Pothayee
  5. Tatjana Atanasijevic
  6. Nadia Bouraoud
  7. Dragan Maric
  8. E Ashley Moseman
  9. Selamawit Gossa
  10. Dorian B McGavern
  11. Alan P Koretsky  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States
  2. Duke University School of Medicine, United States

Abstract

Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.

Data availability

The source data of this study wilb be available in Dryad (https://doi.org/10.5061/dryad.79cnp5hwp)

The following data sets were generated

Article and author information

Author details

  1. Li Liu

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    li.liu3@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2493-3086
  2. Steve Dodd

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan D Hunt

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikorn Pothayee

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tatjana Atanasijevic

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadia Bouraoud

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dragan Maric

    Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. E Ashley Moseman

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Selamawit Gossa

    Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dorian B McGavern

    Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan P Koretsky

    Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    koretskya@ninds.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8085-4756

Funding

the National Institute of Health

  • Alan P Koretsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Publication history

  1. Received: October 5, 2021
  2. Preprint posted: October 22, 2021 (view preprint)
  3. Accepted: May 5, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Version of Record published: May 13, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 519
    Page views
  • 87
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Li Liu
  2. Steve Dodd
  3. Ryan D Hunt
  4. Nikorn Pothayee
  5. Tatjana Atanasijevic
  6. Nadia Bouraoud
  7. Dragan Maric
  8. E Ashley Moseman
  9. Selamawit Gossa
  10. Dorian B McGavern
  11. Alan P Koretsky
(2022)
Early detection of cerebrovascular pathology and protective antiviral immunity by MRI
eLife 11:e74462.
https://doi.org/10.7554/eLife.74462

Further reading

    1. Neuroscience
    Abraham Katzen, Hui-Kuan Chung ... Shawn R Lockery
    Research Article Updated

    In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potentials are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a very small nervous system sets a new lower bound on the computational requirements for utility maximization and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution in this organism.

    1. Neuroscience
    Yuan-hao Wu, Ella Podvalny, Biyu J He
    Research Article Updated

    While there is a wealth of knowledge about core object recognition—our ability to recognize clear, high-contrast object images—how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla (7T) fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.