Inhibition of β1-AR/Gαs signaling promotes cardiomyocyte proliferation in juvenile mice through activation of RhoA-YAP axis

  1. Masahide Sakabe
  2. Michael Thompson
  3. Nong Chen
  4. Mark Verba
  5. Aishlin Hassan
  6. Richard Lu
  7. Mei Xin  Is a corresponding author
  1. Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, United States
  2. Department of Pediatrics, College of Medicine, University of Cincinnati, United States
7 figures, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
β-blocker (Metoprolol) treatment promotes neonatal-juvenile cardiomyocyte proliferation.

(a) Schematic of experimental timeline. (b) Heart rate of the saline (control) and β-blocker-treated mice at P7 and P14. Data are as mean ± SD, Student’s t-test, P7, n≥5; P14, n≥5. (c) H&E staining …

Figure 1—figure supplement 1
β-blocker treatment promotes cardiomyocyte proliferation after the cardiac regeneration window.

(a) Heart weight (HW) to body weight (BW) ratio of β-blocker treated heart at P7 (Student’s t-test, n≥3). (b) Ki67 and cardiac α-actinin staining of heart sections from control and β-blocker treated …

Figure 2 with 2 supplements
β-blocker treatment promotes cardiac regeneration and cardiomyocyte proliferation following injury in juvenile hearts.

(a) Schematic of experimental timeline. (b) Masson’s trichrome staining of heart sections from control and β-blocker-treated mice 3 weeks post-MI (left panel). Scale bar: 500μm. Quantification of …

Figure 2—figure supplement 1
Scar area is reduced in β-blocker treated hearts 3 weeks post MI.

Hearts were subjected to LAD ligation at P7 and treated with β-blocker from P8 for 3 weeks. Scar area was analyzed by sirius red staining of transverse sections at P28. Serial sections were cut at …

Figure 2—figure supplement 2
β-blocker doesn’t have cardioprotective effect at juvenile period.

2,3,5-Tripherylterazolium chloride (TTC) staining of control and β-blocker treated hearts 1 day post-MI. Right panel showed the % of ischemic area of each heart. Student t-test. N.S., not significant.

Figure 3 with 1 supplement
Deletion of Gnas promotes cardiomyocyte proliferation.

(a) Hematoxylin and eosin staining of P7 control and Gnas cKO heart sections. Scale bar: 500μm. (b) Heart weight (HW) to body weight (BW) ratio of P7 Gnas cKO mice. Data are as mean ± SD, Student’s …

Figure 3—figure supplement 1
Gnas cKO hearts exhibit enlarged phenotype but do not show cardiac hypertrophy.

(a) H&E staining of control and Gnas cKO hearts at P1 (upper panels) and P14 (lower panels) and quantification of heart weight-to-body weight ratio of control and Gnas cKO neonates at P1 and P14, …

Figure 4 with 2 supplements
Inhibition of βAR-Gαs signaling leads to elevation of YAP activity in the cardiomyocytes.

(a) Functional enrichment of GO terms for the common down-regulated genes in Gnas cKO and β-blocker treated hearts at P7 (fold change ≤0.8). (b) GSEA plot shows that fatty acid metabolic genes are …

Figure 4—figure supplement 1
Differential gene expression in Gnas cKO and β-blocker-treated hearts.

(a) The Venn diagram shows the down-regulated genes in Gnas cKO and β-blocker treated hearts at P7 (fold change ≤0.8). The total and overlay numbers of down-regulated genes are 1700 and 109, …

Figure 4—figure supplement 2
YAP activity is regulated by Gαs.

(a) Western blot analysis of lysate from P4, P7, and P9 hearts using phospho-YAP (P-YAP) or total YAP antibodies. (b) YAP and cardiac α-actinin immunostaining of P4 and P7 control and Gnas cKO heart …

Figure 5 with 2 supplements
GαS regulates cardiomyocyte proliferation through RhoA mediated YAP activation.

(a) Functional enrichment of GO terms for the common up-regulated genes. (b) Active-RhoA pull-down assay and western blot analysis of P7 control and Gnas cKO hearts. (c) Active-RhoA pull-down assay …

Figure 5—figure supplement 1
RhoA activity is only detected in the embryonic and postnatal hearts.

Active-RhoA pull-down assay of wild type hearts at several time points. The online version of this article includes the following source data for Figure 5—figure supplement 1.

Figure 5—figure supplement 2
Comparison of heart rate at different ages.

Heart rate at P0, P7, and P14 in C57BL6 mice. Data are as mean ± SD, n≥5.

Author response image 1
Author response image 2

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
gene (Mus musculus)GnasNCBIGene:14683
strain, strain
background
(Mus musculus)
C57BL/6 JThe Jackson
Laboratory
IMSR_JAX:000664
genetic reagent
(Mus musculus)
Gnasflox/floxThe Jackson
Laboratory
IMSR_JAX:035239
genetic reagent
(Mus musculus)
Yapflox/floxXin et al., 2011
genetic reagent
(Mus musculus)
Myh6-CreSanbe et al., 2003
genetic reagent
(Mus musculus)
Myh6-MerCreMerSohal et al., 2001
biological sample
(Rattus norvegicus)
Primary neonatal rat
cardiomyocytes
In this paperFreshly isolated
from neonatal rats
antibodyPCM1 (rabbit
polyclonal)
SigmaCar#: HPA023370IHC (1:1000)
antibodyPhspho-histon H3 (PH3)
(mouse monoclonal)
MilliporeCar#: 05–806IHC (1:100)
antibodySarcomeric a-actinin
(mouse monoclonal)
SigmaCar#: A7811IHC (1:200)
antibodyCardiac Troponin T
(mouse monoclonal)
ThermoCar#: MA295-P1IHC (1:200)
antibodyYAP (Rabbit
monoclonal)
Cell SignalingCat#: 14074IHC (1:100)
antibodyYAP (Rabbit
polyclonal)
NovusCat#: NB110-58358WB (1:1000)
antibodyPhospho-YAP
(Rabbit monoclonal)
Cell SignalingCat#: 13008WB (1:1000)
antibodyRhoA (Rabbit
monoclonal)
Cell SignalingCat#: 2117WB (1:1000)
antibodyGAPDH (Rabbit
monoclonal)
Cell SignalingCat#: 2118WB (1:1000)
antibodyKi67 (Rabbit
monoclonal)
ThermoCat#: RM9106IHC (1:200)
antibodyAurora B (AurkB)
(Rabbit polyclonal)
AbcamCat#: ab2254IHC (1:100)
antibodyHiston H3 (Rabbit polyclonal)AbcamCat#: ab1791WB (1:3000)
sequence-
based reagent
Hmgcs2-FThis paperqPCR primerGAAGAGAGCGA
TGCAGGAAAC
sequence-
based reagent
Hmgcs2-RThis paperqPCR primerGTCCACATATT
GGGCTGGAAA
sequence-
based reagent
Nqo1-FThis paperqPCR primerAGGATGGGAG
GTACTCGAATC
sequence-
based reagent
Nqo1-RThis paperqPCR primerTGCTAGAGATG
ACTCGGAAGG
sequence-
based reagent
Pla2g4e-FThis paperqPCR primerAGGTGGAGTTC
CTACTCGAAG
sequence-
based reagent
Pla2g4e-RThis paperqPCR primerTGTTCTCGAAGG
AGTCTGTCA
sequence-
based reagent
Pla2g5-FThis paperqPCR primerCCAGGGGGCT
TGCTAGAA
sequence-
based reagent
Pla2g5-RThis paperqPCR primerAGCACCAATC
AGTGCCATCC
sequence-
based reagent
mtDN1-FThis paperqPCR primerCTCTTATCCACG
CTTCCGTTACG
sequence-
based reagent
mtDN1-RThis paperqPCR primerGATGGTGGTAC
TCCCGCTGTA
sequence-
based reagent
mtDN2-FThis paperqPCR primerCCCATTCCACT
TCTGATTACC
sequence-
based reagent
mtDN2-RThis paperqPCR primerATGATAGTAGAG
TTGAGTAGCG
sequence-
based reagent
CTGF-FThis paperqPCR primerGGGCCTCTT
CTGCGATTTC
sequence-
based reagent
CTGF-RThis paperqPCR primerATCCAGGCAAG
TGCATTGGTA
sequence-
based reagent
Ankrd1-FThis paperqPCR primerGGATGTGCCGA
GGTTTCTGAA
sequence-
based reagent
Ankrd1-RThis paperqPCR primerGTCCGTTTATAC
TCATCGCAGAC
commercial
assay or kit
Neonatal cardiomyocyte
isolation kit
CellutronNC-6031
commercial
assay or kit
RNeasy mini kitQiagen74104
chemical
compound, drug
EpinephrineSigmaE4375100 mM
chemical
compound, drug
C3CytoskeletonCT041 mg/ml
chemical
compound, drug
GO4Provided by
Dr. Yi Zheng
100 mM
chemical
compound, drug
TamoxifenSigmaT564850 mg/kg, IP injection
chemical
compound, drug
Metoprolol (b-blocker)SigmaM53912 mg/kg, IP injection
chemical
compound, drug
5-ethynyl-2-
deoxyuridine (EdU)
ThermoCat#: C103375 mg/kg, IP injection
software,
algorithm
ImageJNational Institutes of
Health (NIH)
other4',6-diamidino-2-
phenylindole (DAPI)
InvitrogenD1306For nuclear staining
otherWheat germ
agglutinin (WGA)
InvitrogenW11261For plasma membrane staining
otherCollagenase BRoche110888150011.8 mg/ml For heart digestion
otherCollagenase DRoche110888660012.4 mg/ml For heart digestion
other2,3,5-
Tripherylterazolium
chloride (TTC)
SigmaT8877For staining of ischemic region

Additional files

Download links