Constructing the hierarchy of predictive auditory sequences in the marmoset brain

  1. Yuwei Jiang
  2. Misako Komatsu
  3. Yuyan Chen
  4. Ruoying Xie
  5. Kaiwei Zhang
  6. Ying Xia
  7. Peng Gui
  8. Zhifeng Liang  Is a corresponding author
  9. Liping Wang  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Center for Brain Science, RIKEN, Japan

Abstract

Our brains constantly generate predictions of sensory input that are compared with actual inputs, propagate the prediction-errors through a hierarchy of brain regions, and subsequently update the internal predictions of the world. However, the essential feature of predictive coding, the notion of hierarchical depth and its neural mechanisms, remains largely unexplored. Here, we investigated the hierarchical depth of predictive auditory processing by combining functional magnetic resonance imaging (fMRI) and high-density whole-brain electrocorticography (ECoG) in marmoset monkeys during an auditory local-global paradigm in which the temporal regularities of the stimuli were designed at two hierarchical levels. The prediction-errors and prediction updates were examined as neural responses to auditory mismatches and omissions. Using fMRI, we identified a hierarchical gradient along the auditory pathway: midbrain and sensory regions represented local, shorter-time-scale predictive processing followed by associative auditory regions, whereas anterior temporal and prefrontal areas represented global, longer-time-scale sequence processing. The complementary ECoG recordings confirmed the activations at cortical surface areas and further differentiated the signals of prediction-error and update, which were transmitted via putative bottom-up g and top-down b oscillations, respectively. Furthermore, omission responses caused by absence of input, reflecting solely the two levels of prediction signals that are unique to the hierarchical predictive coding framework, demonstrated the hierarchical top-down process of predictions in the auditory, temporal, and prefrontal areas. Thus, our findings support the hierarchical predictive coding framework, and outline how neural networks and spatiotemporal dynamics are used to represent and arrange a hierarchical structure of auditory sequences in the marmoset brain.

Data availability

The fMRI and ECoG data that support the findings of this study are publicly available in Dryad: Jiang, Yuwei (2021), Constructing the hierarchy of predictive auditory sequences in the marmoset brain, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95xfp.

The following data sets were generated

Article and author information

Author details

  1. Yuwei Jiang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9533-0760
  2. Misako Komatsu

    Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4464-4484
  3. Yuyan Chen

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruoying Xie

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Kaiwei Zhang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying Xia

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Peng Gui

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhifeng Liang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    zliang@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Liping Wang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    lipingwng@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2038-0234

Funding

National Science and Technology Innovation 2030 Major Program (2021ZD0204102)

  • Liping Wang

Youth Innovation Promotion Association Chinese Academy of Sciences

  • Yuwei Jiang

Brain/MINDS from the Japan Agency for Medical Research and Development (JP20dm0207069)

  • Misako Komatsu

JSPS KAKENHI (JP19H04993)

  • Misako Komatsu

Strategic Priority Research Program (XDB32070201)

  • Liping Wang

Strategic Priority Research Program (XDB32030100)

  • Liping Wang

Strategic Priority Research Program (XDBS01030100)

  • Zhifeng Liang

Pioneer Hundreds of Talents Program from the Chinese Academy of Sciences

  • Zhifeng Liang
  • Liping Wang

Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)

  • Liping Wang

Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)

  • Zhifeng Liang

National Natural Science Foundation of China (81801354)

  • Zhifeng Liang

National Natural Science Foundation of China (31900797)

  • Yuwei Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The protocol of the fMRI study was approved by the Ethical Committee of the Institute of Neuroscience, Chinese Academy of Sciences (no. ION-20180522). All procedures of the ECoG study were conducted in accordance with a protocol approved by the RIKEN Ethical Committee [no. W2020-2-008(2)].

Copyright

© 2022, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,242
    views
  • 476
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuwei Jiang
  2. Misako Komatsu
  3. Yuyan Chen
  4. Ruoying Xie
  5. Kaiwei Zhang
  6. Ying Xia
  7. Peng Gui
  8. Zhifeng Liang
  9. Liping Wang
(2022)
Constructing the hierarchy of predictive auditory sequences in the marmoset brain
eLife 11:e74653.
https://doi.org/10.7554/eLife.74653

Share this article

https://doi.org/10.7554/eLife.74653

Further reading

    1. Neuroscience
    Juan Carlos Boffi, Brice Bathellier ... Robert Prevedel
    Research Article

    Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.