Abstract

Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the 'classically activated' M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, 'alternatively activated' M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data were submitted to Mendeley (DOI:10.17632/ncbph43m85.2).

The following data sets were generated

Article and author information

Author details

  1. Mimmi LE Lundahl

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    For correspondence
    lundahlm@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3924-4072
  2. Morgane Mitermite

    School of Veterinary Medicine, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9169-2134
  3. Dylan Gerard Ryan

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Case

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  5. Niamh C Williams

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Ming Yang

    MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Roisin I Lynch

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Eimear Lagan

    School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  9. Filipa M Lebre

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  10. Aoife L Gorman

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  11. Bojan Stojkovic

    School of Veterinary Medicine, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  12. Adrian P Bracken

    School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Frezza

    MRC Cancer, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Frederick J Sheedy

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  15. Eoin M Scanlan

    School of Chemistry, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  16. Luke AJ O'Neill

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  17. Stephen V Gordon

    School of Veterinary Medicine, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  18. Ed C Lavelle

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    For correspondence
    lavellee@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3167-1080

Funding

Trinity College Dublin

  • Mimmi LE Lundahl

Science Foundation Ireland (12/IA/1421)

  • Ed C Lavelle

Science Foundation Ireland (19FFP/6484)

  • Ed C Lavelle

Science Foundation Ireland (15/CDA/3310)

  • Eoin M Scanlan

Advanced Materials and Bioengineering Research (12/RC/2278_P2 E)

  • Ed C Lavelle

Science Foundation Ireland (15/IA/3154)

  • Stephen V Gordon

Wellcome Trust (109166/Z/15/A)

  • Morgane Mitermite

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were maintained according to the regulations of the Health Products Regulatory Authority (HPRA). Animal studies were approved by the TCD Animal Research Ethics Committee (Ethical Approval Number 091210) and were performed under the appropriate license (AE191364/P079).

Copyright

© 2022, Lundahl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,783
    views
  • 777
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mimmi LE Lundahl
  2. Morgane Mitermite
  3. Dylan Gerard Ryan
  4. Sarah Case
  5. Niamh C Williams
  6. Ming Yang
  7. Roisin I Lynch
  8. Eimear Lagan
  9. Filipa M Lebre
  10. Aoife L Gorman
  11. Bojan Stojkovic
  12. Adrian P Bracken
  13. Christian Frezza
  14. Frederick J Sheedy
  15. Eoin M Scanlan
  16. Luke AJ O'Neill
  17. Stephen V Gordon
  18. Ed C Lavelle
(2022)
Macrophage innate training induced by IL-4 and IL-13 activation enhances OXPHOS driven anti-mycobacterial responses
eLife 11:e74690.
https://doi.org/10.7554/eLife.74690

Share this article

https://doi.org/10.7554/eLife.74690

Further reading

    1. Immunology and Inflammation
    Matteo Napoli, Roland Immler ... Monika Pruenster
    Research Article

    S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Lucia Csepregi, Kenneth Hoehn ... Sai T Reddy
    Research Article

    Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.