A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex

Abstract

Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here we uncover negative regulation of cortical network homeostasis by the PARbZIP family of transcription factors. In cortical slice cultures made from knockout mice lacking all three of these factors, the network response to prolonged activity withdrawal measured with calcium imaging is much stronger, while baseline activity is unchanged. Whole cell recordings reveal an exaggerated increase in the frequency of miniature excitatory synaptic currents reflecting enhanced upregulation of recurrent excitatory synaptic transmission. Genetic analyses reveal that two of the factors, Hlf and Tef, are critical for constraining plasticity and for preventing life-threatening seizures. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, calcium imaging analysis code is available http://github.com/VH-Lab/vhlab-TwoPhoton-matlab. RNAseq data have been deposited to the BioSample database.

Article and author information

Author details

  1. Vera Valakh

    Department of Biology, Brandeis University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7149-1562
  2. Derek Wise

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Xiaoyue Aelita Zhu

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  4. Mingqi Sha

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Jaidyn Fok

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. Stephen D Van Hooser

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1112-5832
  7. Robin Schectman

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Isabel Cepeda

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  9. Ryan Kirk

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  10. Sean M O'Toole

    Department of Biology, Brandeis University, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Sacha B Nelson

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0108-8599

Funding

National Institute of Neurological Disorders and Stroke (R01NS109916)

  • Sacha B Nelson

Simons Foundation Autism Research Initiative (648651)

  • Sacha B Nelson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee at Brandeis University (Protocol #20002), and conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Copyright

© 2023, Valakh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,633
    views
  • 188
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vera Valakh
  2. Derek Wise
  3. Xiaoyue Aelita Zhu
  4. Mingqi Sha
  5. Jaidyn Fok
  6. Stephen D Van Hooser
  7. Robin Schectman
  8. Isabel Cepeda
  9. Ryan Kirk
  10. Sean M O'Toole
  11. Sacha B Nelson
(2023)
A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex
eLife 12:e74899.
https://doi.org/10.7554/eLife.74899

Share this article

https://doi.org/10.7554/eLife.74899

Further reading

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.