Structural and functional insights of the human peroxisomal ABC transporter ALDP

  1. Yutian Jia
  2. Yanming Zhang
  3. Wenhao Wang
  4. Jianlin Lei
  5. Zhengxin Ying
  6. Guanghui Yang  Is a corresponding author
  1. China Agricultural University, China
  2. Tsinghua University, China

Abstract

Adrenoleukodystrophy protein (ALDP) is responsible for the transport of very-long-chain fatty acids (VLCFAs) and corresponding CoA-esters across the peroxisomal membrane. Dysfunction of ALDP leads to peroxisomal metabolic disorder exemplified by X-linked adrenoleukodystrophy (ALD). Hundreds of ALD-causing mutations have been identified on ALDP. However, the pathogenic mechanisms of these mutations are restricted to clinical description due to limited structural and biochemical characterization. Here we report the cryo-electron microscopy (cryo-EM) structure of human ALDP with nominal resolution at 3.4 Å. ALDP exhibits a cytosolic-facing conformation. Compared to other lipid ATP-binding cassette (ABC) transporters, ALDP has two substrate binding cavities formed by the transmembrane domains (TMD). Such structural organization may be suitable for the coordination of VLCFAs. Based on the structure, we performed integrative analysis of the cellular trafficking, protein thermostability, ATP hydrolysis and the transport activity of representative mutations. These results provide a framework for understanding the working mechanism of ALDP and pathogenic roles of disease-associated mutations.

Data availability

1)Cryo-EM data have been deposited in PDB under the accession code 7VR12)All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures supplement 6A.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yutian Jia

    Department of Nutrition and Health, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yanming Zhang

    Department of Nutrition and Health, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenhao Wang

    Department of Nutrition and Health, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jianlin Lei

    Technology Center for Protein Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9384-8742
  5. Zhengxin Ying

    Department of Nutrition and Health, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guanghui Yang

    Department of Nutrition and Health, China Agricultural University, Beijing, China
    For correspondence
    guanghuiyang@cau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6835-1611

Funding

National Natural Science Foundation of China (3217110084)

  • Guanghui Yang

Chinese Universities Scientific Fund (15050004,15050017,15051002)

  • Guanghui Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Drew, Stockholm University, Sweden

Publication history

  1. Preprint posted: September 25, 2021 (view preprint)
  2. Received: October 28, 2021
  3. Accepted: November 10, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 23, 2022 (version 2)

Copyright

© 2022, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 761
    Page views
  • 192
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yutian Jia
  2. Yanming Zhang
  3. Wenhao Wang
  4. Jianlin Lei
  5. Zhengxin Ying
  6. Guanghui Yang
(2022)
Structural and functional insights of the human peroxisomal ABC transporter ALDP
eLife 11:e75039.
https://doi.org/10.7554/eLife.75039

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Saif Khan, Cornelius Gati
    Insight

    A complex interplay between structure, conformational dynamics and pharmacology defines distant regulation of G protein-coupled receptors.

    1. Structural Biology and Molecular Biophysics
    Zeyu Shen, Bowen Jia ... Mingjie Zhang
    Research Article

    Formation of membraneless organelles or biological condensates via phase separation and related processes hugely expands the cellular organelle repertoire. Biological condensates are dense and viscoelastic soft matters instead of canonical dilute solutions. To date, numerous different biological condensates have been discovered; but mechanistic understanding of biological condensates remains scarce. In this study, we developed an adaptive single molecule imaging method that allows simultaneous tracking of individual molecules and their motion trajectories in both condensed and dilute phases of various biological condensates. The method enables quantitative measurements of concentrations, phase boundary, motion behavior and speed of molecules in both condensed and dilute phases as well as the scale and speed of molecular exchanges between the two phases. Notably, molecules in the condensed phase do not undergo uniform Brownian motion, but instead constantly switch between a (class of) confined state(s) and a random diffusion-like motion state. Transient confinement is consistent with strong interactions associated with large molecular networks (i.e., percolation) in the condensed phase. In this way, molecules in biological condensates behave distinctly different from those in dilute solutions. The methods and findings described herein should be generally applicable for deciphering the molecular mechanisms underlying the assembly, dynamics and consequently functional implications of biological condensates.