The individuality of shape asymmetries of the human cerebral cortex

  1. Yu-Chi Chen  Is a corresponding author
  2. Aurina Arnatkevičiūtė
  3. Eugene McTavish
  4. James C Pang
  5. Sidhant Chopra
  6. Chao Suo
  7. Alex Fornito
  8. Kevin M Aquino
  9. for the Alzheimer's Disease Neuroimaging Initiative
  1. Monash University, Australia
  2. Yale University, United States
  3. University of Sydney, Australia

Abstract

Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.

Data availability

All data generated or analysed during this study are included in the manuscript. All code and dependent toolboxes used in this study can be found at: https://github.com/cyctbdbw/Shape-Asymmetry-Signature. The code of shape-DNA can be found at: http://reuter.mit.edu/software/shapedna/. The OASIS-3 dataset is available under https://www.oasis-brains.org/. The ADNI dataset is available under https://adni.loni.usc.edu. The HCP dataset is available under https://db.humanconnectome.org/.

The following previously published data sets were used

Article and author information

Author details

  1. Yu-Chi Chen

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    For correspondence
    yu-chi.chen@monash.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9167-6417
  2. Aurina Arnatkevičiūtė

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    Competing interests
    No competing interests declared.
  3. Eugene McTavish

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    Competing interests
    No competing interests declared.
  4. James C Pang

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2461-2760
  5. Sidhant Chopra

    Department of Psychology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Chao Suo

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    Competing interests
    No competing interests declared.
  7. Alex Fornito

    Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
    Competing interests
    Alex Fornito, Reviewing editor, eLife.
  8. Kevin M Aquino

    Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
    Competing interests
    Kevin M Aquino, is a scientific advisor and shareholder in BrainKey Inc., a medical image analysis software company..

Funding

Sylvia and Charles Viertel Charitable Foundation (Senior Medical Research Fellowship)

  • Alex Fornito

National Health and Medical Research Council (1197431)

  • Alex Fornito

National Health and Medical Research Council (1146292)

  • Alex Fornito

Australian Research Council (DP200103509)

  • Alex Fornito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study only involved subjects from the open-sourced datasets, and all subjects were de-identified by the datasets. Each dataset was approved by its relevant ethics committee and obtained written informed consent from each participant.

Copyright

© 2022, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,636
    views
  • 358
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu-Chi Chen
  2. Aurina Arnatkevičiūtė
  3. Eugene McTavish
  4. James C Pang
  5. Sidhant Chopra
  6. Chao Suo
  7. Alex Fornito
  8. Kevin M Aquino
  9. for the Alzheimer's Disease Neuroimaging Initiative
(2022)
The individuality of shape asymmetries of the human cerebral cortex
eLife 11:e75056.
https://doi.org/10.7554/eLife.75056

Share this article

https://doi.org/10.7554/eLife.75056

Further reading

    1. Neuroscience
    Yujiro Umezaki, Sergio Hidalgo ... Fumika Hamada
    Research Article

    Hungry animals consistently show a desire to obtain food. Even a brief sensory detection of food can trigger bursts of physiological and behavioral changes. However, the underlying mechanisms by which the sensation of food triggers the acute behavioral response remain elusive. We have previously shown in Drosophila that hunger drives a preference for low temperature. Because Drosophila is a small ectotherm, a preference for low temperature implies a low body temperature and a low metabolic rate. Here, we show that taste-sensing triggers a switch from a low to a high temperature preference in hungry flies. We show that taste stimulation by artificial sweeteners or optogenetics triggers an acute warm preference, but is not sufficient to reach the fed state. Instead, nutrient intake is required to reach the fed state. The data suggest that starvation recovery is controlled by two components: taste-evoked and nutrient-induced warm preferences, and that taste and nutrient quality play distinct roles in starvation recovery. Animals are motivated to eat based on time of day or hunger. We found that clock genes and hunger signals profoundly control the taste-evoked warm preferences. Thus, our data suggest that the taste-evoked response is one of the critical layers of regulatory mechanisms representing internal energy homeostasis and metabolism.

    1. Medicine
    2. Neuroscience
    Sophie Leclercq, Hany Ahmed ... Nathalie Delzenne
    Research Article

    Background:

    Alcohol use disorder (AUD) is a global health problem with limited therapeutic options. The biochemical mechanisms that lead to this disorder are not yet fully understood, and in this respect, metabolomics represents a promising approach to decipher metabolic events related to AUD. The plasma metabolome contains a plethora of bioactive molecules that reflects the functional changes in host metabolism but also the impact of the gut microbiome and nutritional habits.

    Methods:

    In this study, we investigated the impact of severe AUD (sAUD), and of a 3-week period of alcohol abstinence, on the blood metabolome (non-targeted LC-MS metabolomics analysis) in 96 sAUD patients hospitalized for alcohol withdrawal.

    Results:

    We found that the plasma levels of different lipids ((lyso)phosphatidylcholines, long-chain fatty acids), short-chain fatty acids (i.e. 3-hydroxyvaleric acid) and bile acids were altered in sAUD patients. In addition, several microbial metabolites, including indole-3-propionic acid, p-cresol sulfate, hippuric acid, pyrocatechol sulfate, and metabolites belonging to xanthine class (paraxanthine, theobromine and theophylline) were sensitive to alcohol exposure and alcohol withdrawal. 3-Hydroxyvaleric acid, caffeine metabolites (theobromine, paraxanthine, and theophylline) and microbial metabolites (hippuric acid and pyrocatechol sulfate) were correlated with anxiety, depression and alcohol craving. Metabolomics analysis in postmortem samples of frontal cortex and cerebrospinal fluid of those consuming a high level of alcohol revealed that those metabolites can be found also in brain tissue.

    Conclusions:

    Our data allow the identification of neuroactive metabolites, from interactions between food components and microbiota, which may represent new targets arising in the management of neuropsychiatric diseases such as sAUD.

    Funding:

    Gut2Behave project was initiated from ERA-NET NEURON network (Joint Transnational Call 2019) and was financed by Academy of Finland, French National Research Agency (ANR-19-NEUR-0003-03) and the Fonds de la Recherche Scientifique (FRS-FNRS; PINT-MULTI R.8013.19, Belgium). Metabolomics analysis of the TSDS samples was supported by grant from the Finnish Foundation for Alcohol Studies.