Rolling circle RNA synthesis catalysed by RNA

  1. Emil Laust Kristoffersen
  2. Matthew Burman
  3. Agnes Noy
  4. Philipp Holliger  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of York, United Kingdom

Abstract

RNA-catalysed RNA replication is widely considered a key step in the emergence of life's first genetic system. However, RNA replication can be impeded by the extraordinary stability of duplex RNA products, which must be dissociated for re-initiation of the next replication cycle. Here we have explored rolling circle synthesis (RCS) as a potential solution to this strand separation problem. We observe sustained RCS by a triplet polymerase ribozyme beyond full-length circle synthesis with strand displacement yielding concatemeric RNA products. Furthermore, we show RCS of a circular Hammerhead ribozyme capable of self-cleavage and re-circularisation. Thus, all steps of a viroid-like RNA replication pathway can be catalysed by RNA alone. Finally, we explore potential RCS mechanisms by molecular dynamics simulations, which indicate a progressive build-up of conformational strain upon RCS' with destabilisation of nascent strand 5'- and 3'-ends. Our results have implications for the emergence of RNA replication and for understanding the potential of RNA to support complex genetic processes.

Data availability

All data generated or analyzed in this manuscript is supplied within the manuscript or supporting file; Source Data files containing original unedited gels images as well as numeric data have been provided for Figures 1,2,4 and 5, as well as figure supplements when relevant.Modelling data and sequencing data are provided as described in the data availability section in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Emil Laust Kristoffersen

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8965-8201
  2. Matthew Burman

    Department of Physics, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Agnes Noy

    Department of Physics, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0673-8949
  4. Philipp Holliger

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    ph1@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3440-9854

Funding

Carlsbergfondet (CF17-0809)

  • Emil Laust Kristoffersen

Medical Research Council (MC_U105178804)

  • Philipp Holliger

Engineering and Physical Sciences Research Council (EP/N027639/1)

  • Agnes Noy

Engineering and Physical Sciences Research Council (EP/R513386/1)

  • Matthew Burman

Engineering and Physical Sciences Research Council (EP/T022205/1)

  • Agnes Noy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kristoffersen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,777
    views
  • 824
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emil Laust Kristoffersen
  2. Matthew Burman
  3. Agnes Noy
  4. Philipp Holliger
(2022)
Rolling circle RNA synthesis catalysed by RNA
eLife 11:e75186.
https://doi.org/10.7554/eLife.75186

Share this article

https://doi.org/10.7554/eLife.75186

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.