Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse

  1. Amy Richardson
  2. Victoria Ciampani
  3. Mihai Stancu
  4. Kseniia Bondarenko
  5. Sherylanne Newton
  6. Joern R Steinert
  7. Nadia Conny Pilati
  8. Bruce P Graham
  9. Conny Kopp-Scheinpflug
  10. Ian Forsythe  Is a corresponding author
  1. University of Leicester, United Kingdom
  2. Ludwig-Maximilians-Universität München, Germany
  3. Istituto di Ricerca Pediatrica Citta'della Speranza, Italy
  4. University of Stirling, United Kingdom

Abstract

Kv3 potassium currents mediate rapid repolarization of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarization for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.

Data availability

Data generated in this study are included in the manuscript and supporting files. Source data files for each figure has been uploaded onto FigShare. Datasets Generated for the Ms "Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse" Authors: Ian D. Forsythe, Amy Richardson, Victoria Ciampani, Mihai Stancu, Kseniia Bondarenko, Sherylanne Newton, Joern Steinert, Nadia Pilati, Bruce Graham, Conny Kopp-Scheinpflug, 2022,https://figshare.com/s/9c0a07ed2fe5761cc281. The model code and associated data files are available at: Bruce Graham, 2021, https://github.com/bpgraham/CoH-Models

The following data sets were generated

Article and author information

Author details

  1. Amy Richardson

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1552-2915
  2. Victoria Ciampani

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  3. Mihai Stancu

    Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
    Competing interests
    No competing interests declared.
  4. Kseniia Bondarenko

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  5. Sherylanne Newton

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8210-3526
  6. Joern R Steinert

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  7. Nadia Conny Pilati

    Istituto di Ricerca Pediatrica Citta'della Speranza, Padova, Italy
    Competing interests
    Nadia Conny Pilati, This author is employed by Autifony Therapeutics Ltd..
  8. Bruce P Graham

    Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
    Competing interests
    No competing interests declared.
  9. Conny Kopp-Scheinpflug

    Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
    Competing interests
    No competing interests declared.
  10. Ian Forsythe

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    For correspondence
    idf@le.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8216-0419

Funding

Biotechnology and Biological Sciences Research Council (R001154/1)

  • Ian Forsythe

Biotechnology and Biological Sciences Research Council (Case Award M016501)

  • Ian Forsythe

H2020 Health (ITN LISTEN 722098)

  • Ian Forsythe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Henrique von Gersdorff, Oregon Health and Science University, United States

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animals (Scientific Procedures) Act UK 1986 and as revised by the European Directive 2010/63/EU on the protection of animals used for scientific purposes. All procedures were approved by national oversight bodies (UK Home Office, or Bavarian district government, ROB-55.2-2532.Vet_02-18-1183) and the local animal research ethics review committees. In vivo experiments were conducted under anaesthesia: with a subcutaneous injection of 0.01ml/g MMF (0.5mg/kg body weight Medetomidine, 5.0mg/kg body weight Midazolam and 0.05mg/kg body weight Fentanyl). Every effort was made to minimise suffering and at the end of each procedure the animal was humanely killed using an approved method.

Version history

  1. Received: November 2, 2021
  2. Preprint posted: November 3, 2021 (view preprint)
  3. Accepted: April 29, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Accepted Manuscript updated: May 6, 2022 (version 2)
  6. Version of Record published: May 16, 2022 (version 3)

Copyright

© 2022, Richardson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    views
  • 297
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy Richardson
  2. Victoria Ciampani
  3. Mihai Stancu
  4. Kseniia Bondarenko
  5. Sherylanne Newton
  6. Joern R Steinert
  7. Nadia Conny Pilati
  8. Bruce P Graham
  9. Conny Kopp-Scheinpflug
  10. Ian Forsythe
(2022)
Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse
eLife 11:e75219.
https://doi.org/10.7554/eLife.75219

Share this article

https://doi.org/10.7554/eLife.75219

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.