Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse

  1. Amy Richardson
  2. Victoria Ciampani
  3. Mihai Stancu
  4. Kseniia Bondarenko
  5. Sherylanne Newton
  6. Joern R Steinert
  7. Nadia Conny Pilati
  8. Bruce P Graham
  9. Conny Kopp-Scheinpflug
  10. Ian Forsythe  Is a corresponding author
  1. University of Leicester, United Kingdom
  2. Ludwig-Maximilians-Universität München, Germany
  3. Istituto di Ricerca Pediatrica Citta'della Speranza, Italy
  4. University of Stirling, United Kingdom

Abstract

Kv3 potassium currents mediate rapid repolarization of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarization for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.

Data availability

Data generated in this study are included in the manuscript and supporting files. Source data files for each figure has been uploaded onto FigShare. Datasets Generated for the Ms "Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse" Authors: Ian D. Forsythe, Amy Richardson, Victoria Ciampani, Mihai Stancu, Kseniia Bondarenko, Sherylanne Newton, Joern Steinert, Nadia Pilati, Bruce Graham, Conny Kopp-Scheinpflug, 2022,https://figshare.com/s/9c0a07ed2fe5761cc281. The model code and associated data files are available at: Bruce Graham, 2021, https://github.com/bpgraham/CoH-Models

The following data sets were generated

Article and author information

Author details

  1. Amy Richardson

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1552-2915
  2. Victoria Ciampani

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  3. Mihai Stancu

    Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
    Competing interests
    No competing interests declared.
  4. Kseniia Bondarenko

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  5. Sherylanne Newton

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8210-3526
  6. Joern R Steinert

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  7. Nadia Conny Pilati

    Istituto di Ricerca Pediatrica Citta'della Speranza, Padova, Italy
    Competing interests
    Nadia Conny Pilati, This author is employed by Autifony Therapeutics Ltd..
  8. Bruce P Graham

    Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
    Competing interests
    No competing interests declared.
  9. Conny Kopp-Scheinpflug

    Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
    Competing interests
    No competing interests declared.
  10. Ian Forsythe

    epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
    For correspondence
    idf@le.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8216-0419

Funding

Biotechnology and Biological Sciences Research Council (R001154/1)

  • Ian Forsythe

Biotechnology and Biological Sciences Research Council (Case Award M016501)

  • Ian Forsythe

H2020 Health (ITN LISTEN 722098)

  • Ian Forsythe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Henrique von Gersdorff, Oregon Health and Science University, United States

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animals (Scientific Procedures) Act UK 1986 and as revised by the European Directive 2010/63/EU on the protection of animals used for scientific purposes. All procedures were approved by national oversight bodies (UK Home Office, or Bavarian district government, ROB-55.2-2532.Vet_02-18-1183) and the local animal research ethics review committees. In vivo experiments were conducted under anaesthesia: with a subcutaneous injection of 0.01ml/g MMF (0.5mg/kg body weight Medetomidine, 5.0mg/kg body weight Midazolam and 0.05mg/kg body weight Fentanyl). Every effort was made to minimise suffering and at the end of each procedure the animal was humanely killed using an approved method.

Version history

  1. Received: November 2, 2021
  2. Preprint posted: November 3, 2021 (view preprint)
  3. Accepted: April 29, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Accepted Manuscript updated: May 6, 2022 (version 2)
  6. Version of Record published: May 16, 2022 (version 3)

Copyright

© 2022, Richardson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,504
    views
  • 286
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy Richardson
  2. Victoria Ciampani
  3. Mihai Stancu
  4. Kseniia Bondarenko
  5. Sherylanne Newton
  6. Joern R Steinert
  7. Nadia Conny Pilati
  8. Bruce P Graham
  9. Conny Kopp-Scheinpflug
  10. Ian Forsythe
(2022)
Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse
eLife 11:e75219.
https://doi.org/10.7554/eLife.75219

Share this article

https://doi.org/10.7554/eLife.75219

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.