Air pollution particles hijack peroxidasin to disrupt immunosurveillance and promote lung cancer

Abstract

Although fine particulate matter (FPM) in air pollutants and tobacco smoke is recognized as a strong carcinogen and global threat to public health, its biological mechanism for inducing lung cancer remains unclear. Here, by investigating FPM's bioactivities in lung carcinoma mice models, we discover that these particles promote lung tumor progression by inducing aberrant thickening of tissue matrix and hampering migration of anti-tumor immunocytes. Upon inhalation into lung tissue, these FPM particles abundantly adsorb peroxidasin (PXDN) - an enzyme mediating type IV collagen (Col IV) crosslinking - onto their surface. The adsorbed PXDN exerts abnormally high activity to crosslink Col IV via increasing the formation of sulfilimine bonds at the NC1 domain, leading to an overly dense matrix in the lung tissue. This disordered structure decreases the mobility of cytotoxic CD8+ T lymphocytes into the lung and consequently impairs the local immune surveillance, enabling the flourishing of nascent tumor cells. Meanwhile, inhibiting the activity of PXDN abolishes the tumor-promoting effect of FPM, indicating the key impact of aberrant PXDN activity on the tumorigenic process. In summary, our finding elucidates a new mechanism for FPM-induced lung tumorigenesis and identifies PXDN as a potential target for treatment or prevention of the FPM-relevant biological risks.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 2, 3, 4 and 5.

Article and author information

Author details

  1. Zhenzhen Wang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ziyu Zhai

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chunyu Chen

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xuejiao Tian

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhen Xing

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Panfei Xing

    State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yushun Yang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Junfeng Zhang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    For correspondence
    jfzhang@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Chunming Wang

    State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
    For correspondence
    cmwang@umac.mo
    Competing interests
    The authors declare that no competing interests exist.
  10. Lei Dong

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    For correspondence
    leidong@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4191

Funding

National Natural Science Foundation of China (31971309)

  • Lei Dong

National Natural Science Foundation of China (32001069)

  • Zhenzhen Wang

National Natural Science Foundation of China (81973273)

  • Junfeng Zhang

Natural Science Foundation of Jiangsu Province (BK20200318)

  • Zhenzhen Wang

Fundo para o Desenvolvimento das Ciências e da Tecnologia (FDCT 0018/2019/AFJ,0060/2020/AGJ)

  • Chunming Wang

Universidade de Macau (MYRG2020-00084-ICMS)

  • Chunming Wang

National Natural Science Foundation of China (the funds for the International Cooperation and Exchange,31961160701)

  • Lei Dong

Nanjing University (the Fundamental Research Funds for the Central Universities,020814380115)

  • Lei Dong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of Nanjing University. The protocol was approved by the Animal Ethical and Welfare Committee of Nanjing University (Permit Number: 2008011). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenzhen Wang
  2. Ziyu Zhai
  3. Chunyu Chen
  4. Xuejiao Tian
  5. Zhen Xing
  6. Panfei Xing
  7. Yushun Yang
  8. Junfeng Zhang
  9. Chunming Wang
  10. Lei Dong
(2022)
Air pollution particles hijack peroxidasin to disrupt immunosurveillance and promote lung cancer
eLife 11:e75345.
https://doi.org/10.7554/eLife.75345

Share this article

https://doi.org/10.7554/eLife.75345

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Cancer Biology
    Ke Ning, Yuanyuan Xie ... Ling Yu
    Research Article

    For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids’ 3D structure was investigated.