Air pollution particles hijack peroxidasin to disrupt immunosurveillance and promote lung cancer

Abstract

Although fine particulate matter (FPM) in air pollutants and tobacco smoke is recognized as a strong carcinogen and global threat to public health, its biological mechanism for inducing lung cancer remains unclear. Here, by investigating FPM's bioactivities in lung carcinoma mice models, we discover that these particles promote lung tumor progression by inducing aberrant thickening of tissue matrix and hampering migration of anti-tumor immunocytes. Upon inhalation into lung tissue, these FPM particles abundantly adsorb peroxidasin (PXDN) - an enzyme mediating type IV collagen (Col IV) crosslinking - onto their surface. The adsorbed PXDN exerts abnormally high activity to crosslink Col IV via increasing the formation of sulfilimine bonds at the NC1 domain, leading to an overly dense matrix in the lung tissue. This disordered structure decreases the mobility of cytotoxic CD8+ T lymphocytes into the lung and consequently impairs the local immune surveillance, enabling the flourishing of nascent tumor cells. Meanwhile, inhibiting the activity of PXDN abolishes the tumor-promoting effect of FPM, indicating the key impact of aberrant PXDN activity on the tumorigenic process. In summary, our finding elucidates a new mechanism for FPM-induced lung tumorigenesis and identifies PXDN as a potential target for treatment or prevention of the FPM-relevant biological risks.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 2, 3, 4 and 5.

Article and author information

Author details

  1. Zhenzhen Wang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ziyu Zhai

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chunyu Chen

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xuejiao Tian

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhen Xing

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Panfei Xing

    State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yushun Yang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Junfeng Zhang

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    For correspondence
    jfzhang@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Chunming Wang

    State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
    For correspondence
    cmwang@umac.mo
    Competing interests
    The authors declare that no competing interests exist.
  10. Lei Dong

    State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
    For correspondence
    leidong@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4191

Funding

National Natural Science Foundation of China (31971309)

  • Lei Dong

National Natural Science Foundation of China (32001069)

  • Zhenzhen Wang

National Natural Science Foundation of China (81973273)

  • Junfeng Zhang

Natural Science Foundation of Jiangsu Province (BK20200318)

  • Zhenzhen Wang

Fundo para o Desenvolvimento das Ciências e da Tecnologia (FDCT 0018/2019/AFJ,0060/2020/AGJ)

  • Chunming Wang

Universidade de Macau (MYRG2020-00084-ICMS)

  • Chunming Wang

National Natural Science Foundation of China (the funds for the International Cooperation and Exchange,31961160701)

  • Lei Dong

Nanjing University (the Fundamental Research Funds for the Central Universities,020814380115)

  • Lei Dong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of Nanjing University. The protocol was approved by the Animal Ethical and Welfare Committee of Nanjing University (Permit Number: 2008011). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,710
    views
  • 329
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenzhen Wang
  2. Ziyu Zhai
  3. Chunyu Chen
  4. Xuejiao Tian
  5. Zhen Xing
  6. Panfei Xing
  7. Yushun Yang
  8. Junfeng Zhang
  9. Chunming Wang
  10. Lei Dong
(2022)
Air pollution particles hijack peroxidasin to disrupt immunosurveillance and promote lung cancer
eLife 11:e75345.
https://doi.org/10.7554/eLife.75345

Share this article

https://doi.org/10.7554/eLife.75345

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Joakim W Karlsson, Vasu R Sah ... Jonas A Nilsson
    Research Article

    Uveal melanoma (UM) is a rare melanoma originating in the eye’s uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.

    1. Cancer Biology
    Samarjit Jana, Mainak Mondal ... Kumaravel Somasundaram
    Research Article

    In tumors with WT p53, alternate mechanisms of p53 inactivation are reported. Here, we have identified a long noncoding RNA, PITAR (p53 Inactivating TRIM28 Associated RNA), as an inhibitor of p53. PITAR is an oncogenic Cancer/testis lncRNA and is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSC). We establish that TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase, is a direct target of PITAR. PITAR interaction with TRIM28 RNA stabilized TRIM28 mRNA, which resulted in increased TRIM28 protein levels and reduced p53 steady-state levels due to enhanced p53 ubiquitination. DNA damage activated PITAR, in addition to p53, in a p53-independent manner, thus creating an incoherent feedforward loop to inhibit the DNA damage response by p53. While PITAR silencing inhibited the growth of WT p53 containing GSCs in vitro and reduced glioma tumor growth in vivo, its overexpression enhanced the tumor growth in a TRIM28-dependent manner and promoted resistance to Temozolomide. Thus, we establish an alternate way of p53 inactivation by PITAR, which maintains low p53 levels in normal cells and attenuates the DNA damage response by p53. Finally, we propose PITAR as a potential GBM therapeutic target.