Abstract

Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects - the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.

Data availability

Figure 5 - Source Data 1, Figure 6 - Source Data 1 and Figure 7 - Source Data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Guillaume Martinez

    CHU Grenoble-Alpes, Grenoble, France
    For correspondence
    gmartinez@chu-grenoble.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7572-9096
  2. Charles Coutton

    CHU Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Corinne Loeuillet

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Cazin

    CHU Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jana Muroňová

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Magalie Boguenet

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Emeline Lambert

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Magali Dhellemmes

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Geneviève Chevalier

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Pascal Hograindleur

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Charline Vilpreux

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Yasmine Neirijnck

    Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Zine Eddine Kherraf

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Jessica Escoffier

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8166-5845
  15. Serge Nef

    Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Pierre F Ray

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Christophe Arnoult

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    For correspondence
    christophe.arnoult@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3753-5901

Funding

Agence Nationale de la Recherche (ANR-19-CE17-0014)

  • Pierre F Ray
  • Christophe Arnoult

Agence Nationale de la Recherche (ANR-21-CE17-0007)

  • Guillaume Martinez
  • Charles Coutton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted according to a protocol approved by the local Ethics Committee (ComEth Grenoble No. 318), by the French government (ministry agreement number #7128 UHTA-U1209-CA), and by the Direction Générale de la Santé (DGS) for the State of Geneva.

Copyright

© 2022, Martinez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 963
    views
  • 151
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillaume Martinez
  2. Charles Coutton
  3. Corinne Loeuillet
  4. Caroline Cazin
  5. Jana Muroňová
  6. Magalie Boguenet
  7. Emeline Lambert
  8. Magali Dhellemmes
  9. Geneviève Chevalier
  10. Jean-Pascal Hograindleur
  11. Charline Vilpreux
  12. Yasmine Neirijnck
  13. Zine Eddine Kherraf
  14. Jessica Escoffier
  15. Serge Nef
  16. Pierre F Ray
  17. Christophe Arnoult
(2022)
Oligogenic heterozygous inheritance of sperm abnormalities in mouse
eLife 11:e75373.
https://doi.org/10.7554/eLife.75373

Share this article

https://doi.org/10.7554/eLife.75373

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.