Abstract

Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects - the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.

Data availability

Figure 5 - Source Data 1, Figure 6 - Source Data 1 and Figure 7 - Source Data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Guillaume Martinez

    CHU Grenoble-Alpes, Grenoble, France
    For correspondence
    gmartinez@chu-grenoble.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7572-9096
  2. Charles Coutton

    CHU Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Corinne Loeuillet

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Cazin

    CHU Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jana Muroňová

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Magalie Boguenet

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Emeline Lambert

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Magali Dhellemmes

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Geneviève Chevalier

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Pascal Hograindleur

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Charline Vilpreux

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Yasmine Neirijnck

    Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Zine Eddine Kherraf

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Jessica Escoffier

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8166-5845
  15. Serge Nef

    Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Pierre F Ray

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Christophe Arnoult

    Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
    For correspondence
    christophe.arnoult@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3753-5901

Funding

Agence Nationale de la Recherche (ANR-19-CE17-0014)

  • Pierre F Ray
  • Christophe Arnoult

Agence Nationale de la Recherche (ANR-21-CE17-0007)

  • Guillaume Martinez
  • Charles Coutton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted according to a protocol approved by the local Ethics Committee (ComEth Grenoble No. 318), by the French government (ministry agreement number #7128 UHTA-U1209-CA), and by the Direction Générale de la Santé (DGS) for the State of Geneva.

Copyright

© 2022, Martinez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 911
    views
  • 145
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillaume Martinez
  2. Charles Coutton
  3. Corinne Loeuillet
  4. Caroline Cazin
  5. Jana Muroňová
  6. Magalie Boguenet
  7. Emeline Lambert
  8. Magali Dhellemmes
  9. Geneviève Chevalier
  10. Jean-Pascal Hograindleur
  11. Charline Vilpreux
  12. Yasmine Neirijnck
  13. Zine Eddine Kherraf
  14. Jessica Escoffier
  15. Serge Nef
  16. Pierre F Ray
  17. Christophe Arnoult
(2022)
Oligogenic heterozygous inheritance of sperm abnormalities in mouse
eLife 11:e75373.
https://doi.org/10.7554/eLife.75373

Share this article

https://doi.org/10.7554/eLife.75373

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    Jarno Mäkelä, Alexandros Papagiannakis ... Christine Jacobs-Wagner
    Research Article

    Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.