A dynamic clamp protocol to artificially modify cell capacitance

  1. Paul Pfeiffer
  2. Federico José Barreda Tomás
  3. Jiameng Wu
  4. Jan-Hendrik Schleimer
  5. Imre Vida
  6. Susanne Schreiber  Is a corresponding author
  1. Humboldt-Universität zu Berlin, Germany
  2. Charité - Universitätsmedizin Berlin, Germany

Abstract

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.

Data availability

All data generated, analysis code as well as computational modelling code is uploaded on https://zenodo.org/, see article section Data and software availability.

The following data sets were generated

Article and author information

Author details

  1. Paul Pfeiffer

    Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5324-5886
  2. Federico José Barreda Tomás

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiameng Wu

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan-Hendrik Schleimer

    Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Imre Vida

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3214-2233
  6. Susanne Schreiber

    Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    s.schreiber@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3913-5650

Funding

Bundesministerium für Bildung und Forschung (01GQ1403)

  • Paul Pfeiffer
  • Jan-Hendrik Schleimer
  • Susanne Schreiber

Deutsche Forschungsgemeinschaft (GRK 1589/2)

  • Paul Pfeiffer
  • Federico José Barreda Tomás

Deutsche Forschungsgemeinschaft (EXC 257)

  • Federico José Barreda Tomás
  • Imre Vida

Deutsche Forschungsgemeinschaft (FOR 2134)

  • Federico José Barreda Tomás
  • Imre Vida

H2020 European Research Council (864243)

  • Paul Pfeiffer
  • Jan-Hendrik Schleimer
  • Susanne Schreiber

Einstein Stiftung Berlin (EZ-2014-224)

  • Jiameng Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and animal maintenance were performaed in accordance with institutional guidelines, the German Animal Welfare Act, the European Council Directive 86/609/EEC regarding the protection of animals, and guidelines from local authorities (Berlin, T-0215/11).

Copyright

© 2022, Pfeiffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,382
    views
  • 273
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Pfeiffer
  2. Federico José Barreda Tomás
  3. Jiameng Wu
  4. Jan-Hendrik Schleimer
  5. Imre Vida
  6. Susanne Schreiber
(2022)
A dynamic clamp protocol to artificially modify cell capacitance
eLife 11:e75517.
https://doi.org/10.7554/eLife.75517

Share this article

https://doi.org/10.7554/eLife.75517

Further reading

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.

    1. Neuroscience
    Scott Isherwood, Sarah A Kemp ... Birte Forstmann
    Research Article

    This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.