A dynamic clamp protocol to artificially modify cell capacitance

  1. Paul Pfeiffer
  2. Federico José Barreda Tomás
  3. Jiameng Wu
  4. Jan-Hendrik Schleimer
  5. Imre Vida
  6. Susanne Schreiber  Is a corresponding author
  1. Humboldt-Universität zu Berlin, Germany
  2. Charité - Universitätsmedizin Berlin, Germany

Abstract

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.

Data availability

All data generated, analysis code as well as computational modelling code is uploaded on https://zenodo.org/, see article section Data and software availability.

The following data sets were generated

Article and author information

Author details

  1. Paul Pfeiffer

    Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5324-5886
  2. Federico José Barreda Tomás

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiameng Wu

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan-Hendrik Schleimer

    Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Imre Vida

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3214-2233
  6. Susanne Schreiber

    Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    s.schreiber@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3913-5650

Funding

Bundesministerium für Bildung und Forschung (01GQ1403)

  • Paul Pfeiffer
  • Jan-Hendrik Schleimer
  • Susanne Schreiber

Deutsche Forschungsgemeinschaft (GRK 1589/2)

  • Paul Pfeiffer
  • Federico José Barreda Tomás

Deutsche Forschungsgemeinschaft (EXC 257)

  • Federico José Barreda Tomás
  • Imre Vida

Deutsche Forschungsgemeinschaft (FOR 2134)

  • Federico José Barreda Tomás
  • Imre Vida

H2020 European Research Council (864243)

  • Paul Pfeiffer
  • Jan-Hendrik Schleimer
  • Susanne Schreiber

Einstein Stiftung Berlin (EZ-2014-224)

  • Jiameng Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: All procedures and animal maintenance were performaed in accordance with institutional guidelines, the German Animal Welfare Act, the European Council Directive 86/609/EEC regarding the protection of animals, and guidelines from local authorities (Berlin, T-0215/11).

Version history

  1. Received: November 12, 2021
  2. Preprint posted: November 13, 2021 (view preprint)
  3. Accepted: March 17, 2022
  4. Accepted Manuscript published: April 1, 2022 (version 1)
  5. Version of Record published: May 26, 2022 (version 2)

Copyright

© 2022, Pfeiffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,204
    views
  • 246
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Pfeiffer
  2. Federico José Barreda Tomás
  3. Jiameng Wu
  4. Jan-Hendrik Schleimer
  5. Imre Vida
  6. Susanne Schreiber
(2022)
A dynamic clamp protocol to artificially modify cell capacitance
eLife 11:e75517.
https://doi.org/10.7554/eLife.75517

Share this article

https://doi.org/10.7554/eLife.75517

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.