Live imaging of the co-translational recruitment of XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE1α

  1. Silvia Gómez-Puerta
  2. Roberto Ferrero
  3. Tobias Hochstoeger
  4. Ivan Zubiri
  5. Jeffrey Chao
  6. Tomás Aragón  Is a corresponding author
  7. Franka Voigt  Is a corresponding author
  1. Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Spain
  2. Friedrich Miescher Institute for Biomedical Research, Switzerland
  3. University of Basel, Switzerland
4 figures, 12 videos, 4 tables and 1 additional file

Figures

Figure 1 with 2 supplements
Live imaging of XBP1 mRNA recruitment to the endoplasmic reticulum (ER).

(A) Reporter construct design: XBP1 wild-type (WT; red) features the mouse XBP1 opening reading frame (ORF) and 3' untranslated region (UTR) and contains a 24 × MS2 stem loop array for mRNA …

Figure 1—figure supplement 1
Characterization of XBP1 splicing and unfolded protein response (UPR) activation in XBP1 wild-type (WT) reporter expressing cells.

HeLa cells stably expressing XBP1-MS2 wild-type (WT) reporters were treated with 0.2 ug/ml doxycycline (Dox) for 15 hours before addition of 100 nM thapsigargin (TG) or 5 mg/ml tunicamycin (TM) for …

Figure 1—figure supplement 2
Flotation assays to investigate HR2-mediated recruitment of XBP1 reporter transcripts to endoplasmic reticulum (ER) membranes.

(A) HEK293 cells were subjected to hypotonic lysis and cytosolic extracts were subjected to flotation in discontinuous sucrose gradients. Fractions 2–3 include floating membranes (as indicated by …

Figure 2 with 2 supplements
Association of XBP1u mRNA with the endoplasmic reticulum (ER) is translation dependent.

(A) Reporter construct design and illustration of the method: XBP1u translation reporters feature a 9× GCN4 array (green) inserted into the opening reading frame downstream of the ER intron and in …

Figure 2—figure supplement 1
Live imaging of XBP1u translation sites.

(A) Correlated diffusion and endoplasmic reticulum (ER) colocalization analysis for individual XBP1u translation site tracks (green) and Gaussia mRNA transcripts (gray). Dots are single particles …

Figure 2—figure supplement 2
Colocalization control experiment shows no unspecific association of XBP1 mRNA and scAB-GFP spots.

(A) Schematic illustration of experimental design: GCN4-SM translation reporters either encoding Renilla luciferase (left) or XBP1u (right) were stably expressed in the HeLa imaging cell lines …

Figure 3 with 1 supplement
Inositol-requiring enzyme 1 alpha (IRE1α)-dependent processing and endoplasmic reticulum (ER) association of XBP1u transcripts during stress.

(A) Reporter construct design: Unspliceable (dark blue) and spliced (light blue) reporter transcripts are identical to XBP1 wild-type (WT; red) except for point mutations in the intron (unsplicable) …

Figure 3—figure supplement 1
Validation of splice site mutants.

(A) Western blot analysis of production of spliced XBP1s protein in response to induction of endoplasmic reticulum (ER) stress with 100 nM thapsigargin (TG) as introduced in Figure 1. Only the …

Figure 4 with 1 supplement
Inositol-requiring enzyme 1 alpha (IRE1α) is able to splice XBP1u mRNA in the absence of foci formation.

(A) Schematic representation of IRE1α-GFP construct design analogous to Belyy et al., 2020. To reduce expression of IRE1α-GFP to match endogenous levels, part of the Emi1 5’ untranslated region …

Figure 4—figure supplement 1
Characterization of unfolded protein response (UPR) activation in Emi1-IRE1α-GFP expressing cells.

HeLa cells, wild-type (WT) or inositol-requiring enzyme 1 alpha (IRE1α) KO (knock out) expressing either no IRE1α (Neg) or reconstituted (Emi1-) IRE1α-GFP at low levels were kept untreated or …

Videos

Video 1
XBP1 wild-type (WT) mRNA colocalization with the endoplasmic reticulum (ER).

HeLa cell line stably expressing XBP1 WT reporter transcripts, NLS-stdMCP-stdHalo, and an ER marker. Simultaneous image acquisition for both channels (XBP1 WT, red, and ER, gray) using 50 ms …

Video 2
Recruitment of a single XBP1 wild-type mRNA transcript to the endoplasmic reticulum (ER).

Close-up from the same image series as shown in Video 1 but highlighting an example for a single particle that is recruited to the ER surface.

Video 3
Stable association of a single XBP1 wild-type mRNA transcript with an endoplasmic reticulum (ER) sheet.

Close-up from the same image series as shown in Video 1 but highlighting an example for a single particle that is stably associated with the ER surface.

Video 4
Lack of colocalization with the endoplasmic reticulum (ER) exhibited by XBP1 HR2 mutant transcripts.

HeLa cell line stably expressing XBP1 HR2 mutant reporter transcripts, NLS-stdMCP-stdHalo and an ER marker. Simultaneous image acquisition for both channels (HR2 mutant, yellow and ER, gray) using …

Video 5
Live imaging of XBP1u translation on the endoplasmic reticulum (ER).

HeLa cell line stably expressing XBP1u translation reporter transcripts, scAB-GFP, and Sec61b-SNAP as ER marker. Simultaneous image acquisition for both channels (XBP1u translation sites, green, and …

Video 6
Colocalization of XBP1 unspliceable mutant reporter transcripts with the endoplasmic reticulum (ER).

HeLa cell line stably expressing XBP1 splice site mutant transcripts, NLS-stdMCP-stdHalo and an ER marker. Simultaneous image acquisition for both channels (XBP1 Unspliceable, blue and ER, gray) …

Video 7
Lack of colocalization with the endoplasmic reticulum (ER) exhibited by XBP1 spliced reporter transcripts.

HeLa cell line stably expressing spliced XBP1 transcripts, NLS-stdMCP-stdHalo, and an ER marker. Simultaneous image acquisition for both channels (XBP1 spliced, light blue and ER, gray) using 50 ms …

Video 8
Lack of colocalization with the endoplasmic reticulum (ER) exhibited by XBP1 WT transcripts in response to ER stress.

HeLa cell line stably expressing XBP1 wild-type (WT) reporter transcripts, NLS-stdMCP-stdHalo, and an ER marker. Cells were treated with 5 µg/ml tunicamycin (TM) for 3–4 hours prior to image …

Video 9
XBP1 WT mRNA colocalization with the endoplasmic reticulum (ER) during ER stress and inhibition of inositol-requiring enzyme 1 alpha RNase activity.

HeLa cell line stably expressing XBP1 wild-type (WT) reporter transcripts, NLS-stdMCP-stdHalo, and an ER-marker. Cells were treated with 5 µg/ml tunicamycin and 50 µM 4µ8C for 3–4 hours prior to …

Video 10
No accumulation of XBP1 wild-type (WT) transcripts in inositol-requiring enzyme 1 alpha (IRE1α)-GFP foci during IRE1α inhibition.

HeLa cell line stably expressing XBP1 WT reporter transcripts, NLS-stdMCP-stdHalo and IRE1α-GFP. Cells were treated with 5 µg/ml tunicamycin and 50 µM 4µ8C for 2–3 hours prior to image acquisition. …

Video 11
Detection of single XBP1 wild-type (WT) transcripts in inositol-requiring enzyme 1 alpha (IRE1α)-GFP foci is possible but extremely rare.

HeLa cell line stably expressing XBP1 WT reporter transcripts, NLS-stdMCP-stdHalo, and IRE1α-GFP. Cells were treated with 5 µg/ml tunicamycin and 50 µM 4µ8C for 2–3 hours prior to image acquisition. …

Video 12
No accumulation of XBP1 splice site mutant transcripts in inositol-requiring enzyme 1 alpha (IRE1α)-GFP foci.

HeLa cell line stably expressing XBP1 splice site mutant reporter transcripts, NLS-stdMCP-stdHalo, and IRE1α-GFP. Cells were treated with 5 µg/ml tunicamycin for 3–4 hours prior to image …

Tables

Table 1
List of antibodies used for western blotting.
ProteinProviderCat. #Notes
XBP1Santa Cruz Biotechnologysc-7160 (M-186)Detects murine XBP1 much better than endogenous, human XBP1
XBP1Cell Signaling#12,782Used to detect both human and murine XBP1 proteins
IRE1αCell Signaling#3294
CalnexinNovus BiologicalsNBP1-97485
Alpha-tubulinSigmaT6074
GAPDHCell Signaling#2118
Table 2
List of primers used for RT-PCR analysis.
Oligonucleotides used in this study (1st Fwd; 2nd Rev.)
H.s. Histone
AAAGCCGCTCGCAAGAGTGCG
ACTTGCCTCCTGCAAAGCAC
H.s. GRP78
GAGCTGTGCAGAAACTCCGGCG
ACCAACTGCTGAATCTTTGGAATTCGAGT
H.s. XBP1u
CACTCAGACTACGTGCACCTC
CAGGGTGATCATTCTCTGAGGGGCTG
H.s. XBP1s
CGGGTCTGCTGAGTCCGCAGCAG
CAGGGTGATCATTCTCTGAGGGGCTG
M.m. XBP1u
CACTCAGACTACGTGCACCTC
CAGGGTGATCATTCTCTGAGGGGCTG
M.m XBP1s
CGGGTCTGCTGAGTCCGCAGCAG
CAGGGTGATCATTCTCTGAGGGGCTG
PCR to analyze M.m splicing by agarose electrophoresis
ACGCTGGATCCTGACGAGGTTCC
GAGAAAGGGAGGCTGGTAAGGAACTA
Table 3
List of smFISH probes to detect mouse XBP1 mRNA.
1taagagtagcactttggggg
2gctactctgtttttcagttt
3ctttctttctatctcgagca
4ctgatttcctagctggagtt
5cgtgagttttctcccgtaaa
6tctggaacctcgtcaggatc
7agaggtgcacatagtctgag
8ttctggggaggtgacaactg
9tgtcagagtccatgggaaga
10actcagaatctgaagaggca
11ccagaatgcccaaaaggata
12aacatgacagggtccaactt
13actctggggaaggacatttg
14tggtaaggaactaggtcctt
15gagttcattaatggcttcca
16gcttggtgtatacatggtca
17cagaggggatctctaaaact
18acgttagtttgactctctgt
19tgcttcctcaattttcacta
20cctcttctgaagagcttaga
21gagacaatgaattcagggtg
22ttccaaaggctctttcttca
23ccagctctgggatgaagtca
24gctggatgaaagcaggtttg
25caagaaggtggtctcagaca
26atatccacagtcactgtgag
27gtctgtaccaagtggagaag
28cattggcaaaagtatcctcc
29cactaatcagctgggggaaa
30cagtgttatgtggctcttta
31ctaggcaatgtgatggtcag
32aagagacaggcctatgctat
33cctctactttggcttttaac
34ggaattcttctaaggccaga
35cttggaagtcatctatgaga
36ataccttagacagctgagtg
37agctgtagtactggaatacc
38tttagagtatactaccacct
39aaactgtcaaatgaccctcc
40catgtccacctgacatgtcg
41gaaatgctaagggccattca
42cgaaacctgggaagcagaga
43cataagggaaaacaagcccc
44agatccatcaagcatttaca
Table 4
Imaging data statistics.
Data statistics for live imaging experiments
ReporterExperimentIndependent replicatesID experimentsCellsMean tracks (≥3 frames) per cellTracks ≥3 framesTracks ≥10 framesTracks ≥30 frames
GaussiaCtrl220200323, 202004201914928221480864
XBP1 wtCtrl420191023, 20191108, 20200313,202107023714152002588997
XBP1u translation reporterCtrl320211018, 20211022, 2021102350361815923519
XBP1 HR2 mutantCtrl320191023, 20191108, 202003132520651442454653
SplicedCtrl320200313, 20210226, 202110223619369433261955
UnspliceableCtrl320200313, 20210226, 2021102534194661229971120
XBP1 wtTM320210218, 20210322, 202107023711743262183741
SplicedTM320210218, 20210322, 202110223515253092571817
UnspliceableTM320210218, 20210322, 2021102543120514324911001
XBP1 wtTM +4µ8C320210219, 20210702, 2021101741119489625091046
SplicedTM +4µ8C320210219, 20211017, 20211022351736,0442,792793
UnspliceableTM +4µ8C320210219, 20211017, 2021102548120575027661031
Data statistics for smFISH experiments
ExperimentColocalization control
ConditionCtrlTMXBP1 wt +Renilla LuciferaseXBP1u only
Cells278170208114
Replicates2211
scAB-GFP spots4172192840861928
XBP1 mRNA spots6704418652302313
Mean fraction of transl. mRNAs0.470.180.0110.498
Data statistics for IRE1a-GFP foci quantification
ExperimentConstruct nameReplicate 1Replicate 2Replicate 3Replicate 4
TMEmi1-IRE1α-GFP20220510_57720220510_63020220513_630
Cells total233115167
Cells w/o foci233115167
Cells with foci000
Mean(Fraction in foci)000
SD (Fraction in foci)000
Fraction(Cells with foci)000
Image series101010
IRE1α-GFP20200826_63120220510_63020220513_630
Cells total55178301
Cells w/o foci43152213
Cells with foci122688
Mean(Fraction in foci)0.019206050.020549730.02550403
SD (Fraction in foci)0.008503520.013933750.01711448
Fraction(Cells with foci)0.218181820.146067420.2923588
Image series81015
CtrlEmi1-IRE1α-GFP20220427_63020220428_57720220428_63020220513_630
Cells total7610753136
Cells w/o foci7610753136
Cells with foci0000
Mean(Fraction in foci)0000
SD (Fraction in foci)0000
Fraction(Cells with foci)0000
Image series55510
IRE1α-GFP20220427_57720220428_57720220428_63020220513_630
Cells total5246123105
Cells w/o foci5246123105
Cells with foci0000
Mean(Fraction in foci)0000
SD (Fraction in foci)0000
Fraction(Cells with foci)0000
Image series5455

Additional files

Download links