Role of anterior insula cortex in context-induced relapse of nicotine-seeking

  1. Hussein Ghareh
  2. Isis Alonso-Lozares
  3. Dustin Schetters
  4. Rae J Herman
  5. Tim S Heistek
  6. Yvar Van Mourik
  7. Philip Jean-Richard-dit-Bressel
  8. Gerald Zernig
  9. Huibert D Mansvelder
  10. Taco J De Vries
  11. Nathan J Marchant  Is a corresponding author
  1. Medical University of Innsbruck, Austria
  2. Amsterdam University Medical Centers, Netherlands
  3. Vrije Universiteit Amsterdam, Netherlands
  4. University of New South Wales, Australia

Abstract

Tobacco use is the leading cause of preventable death worldwide, and relapse during abstinence remains the critical barrier to successful treatment of tobacco addiction. During abstinence, environmental contexts associated with nicotine use can induce craving and contribute to relapse. The insular cortex (IC) is thought to be a critical substrate of nicotine addiction and relapse. However, its specific role in context-induced relapse of nicotine-seeking is not fully known. In this study, we report a novel rodent model of context-induced relapse to nicotine-seeking after punishment-imposed abstinence, which models self-imposed abstinence through increasing negative consequences of excessive drug use. Using the neuronal activity marker Fos we find that the anterior (aIC), but not the middle or posterior IC, shows increased activity during context-induced relapse. Combining Fos with retrograde labelling of aIC inputs, we show projections to aIC from contralateral aIC and basolateral amygdala exhibit increased activity during context-induced relapse. Next, we used fiber photometry in aIC and observed phasic increases in aIC activity around nicotine-seeking responses during self-administration, punishment, and the context-induced relapse tests. Next, we used chemogenetic inhibition in both male and female rats to determine whether activity in aIC is necessary for context-induced relapse. We found that chemogenetic inhibition of aIC decreased context-induced nicotine-seeking after either punishment- or extinction-imposed abstinence. These findings highlight the critical role nicotine-associated contexts play in promoting relapse, and they show that aIC activity is critical for this context-induced relapse following both punishment and extinction imposed abstinence.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-5, and Supplementary Figures 1-3.

Article and author information

Author details

  1. Hussein Ghareh

    Department of Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Isis Alonso-Lozares

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Dustin Schetters

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Rae J Herman

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Tim S Heistek

    Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Yvar Van Mourik

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip Jean-Richard-dit-Bressel

    School of Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerald Zernig

    Department of Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Huibert D Mansvelder

    Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1365-5340
  10. Taco J De Vries

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathan J Marchant

    Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
    For correspondence
    n.marchant@amsterdamumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8269-0532

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.Vidi.188.022)

  • Nathan J Marchant

Fulbright Association

  • Rae J Herman

Austrian Science Fund (SPIN supportW1206-12)

  • Hussein Ghareh
  • Gerald Zernig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In compliance with Dutch law and Institutional regulations, all animal procedures were approved by the Centrale Commissie Dierproeven (CCD) and conducted in accordance with the Experiments on Animal Act. Experiments were approved by the local animal welfare body Animal Experiments Committee of the Vrije Universiteit, Amsterdam, The Netherlands.

Copyright

© 2022, Ghareh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,680
    views
  • 302
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hussein Ghareh
  2. Isis Alonso-Lozares
  3. Dustin Schetters
  4. Rae J Herman
  5. Tim S Heistek
  6. Yvar Van Mourik
  7. Philip Jean-Richard-dit-Bressel
  8. Gerald Zernig
  9. Huibert D Mansvelder
  10. Taco J De Vries
  11. Nathan J Marchant
(2022)
Role of anterior insula cortex in context-induced relapse of nicotine-seeking
eLife 11:e75609.
https://doi.org/10.7554/eLife.75609

Share this article

https://doi.org/10.7554/eLife.75609

Further reading

    1. Neuroscience
    Proloy Das, Mingjian He, Patrick L Purdon
    Tools and Resources

    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters – the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations – all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

    1. Neuroscience
    Sihan Yang, Anastasia Kiyonaga
    Insight

    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.