Adaptation of Drosophila larva foraging in response to changes in food resources

  1. Marina E Wosniack
  2. Dylan Festa
  3. Nan Hu
  4. Julijana Gjorgjieva  Is a corresponding author
  5. Jimena Berni  Is a corresponding author
  1. Max Planck Institute for Brain Research, Germany
  2. Technical University of Munich, Germany
  3. University of Cambridge, United Kingdom
  4. University of Sussex, United Kingdom

Abstract

All animals face the challenge of finding nutritious resources in a changing environment. To maximize life-time fitness, the exploratory behavior has to be flexible, but which behavioral elements adapt and what triggers those changes remain elusive. Using experiments and modeling, we characterized extensively how Drosophila larvae foraging adapts to different food quality and distribution and how the foraging genetic background influences this adaptation. Our work shows that different food properties modulated specific motor programs. Food quality controls the travelled distance by modulating crawling speed and frequency of pauses and turns. Food distribution, and in particular the food-no food interphase, controls turning behavior, stimulating turns towards the food when reaching the patch border and increasing the proportion of time spent within patches of food. Finally, the polymorphism in the foraging gene (rover-sitter) of the larvae adjusts the magnitude of the behavioral response to different food conditions. This study defines several levels of control of foraging and provides the basis for the systematic identification of the neuronal circuits and mechanisms controlling each behavioral response.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files 1 and 2; Source Data files have been provided formal experimental data: Figures 1, 3, 4 and 6.

Article and author information

Author details

  1. Marina E Wosniack

    Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2175-9713
  2. Dylan Festa

    School of Life Sciences, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nan Hu

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Julijana Gjorgjieva

    Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
    For correspondence
    gjorgjieva@brain.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7118-4079
  5. Jimena Berni

    Brighton and Sussex Medical School,, University of Sussex, Brighton, United Kingdom
    For correspondence
    j.berni@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5068-1372

Funding

Royal Society (105568/Z/14/Z)

  • Jimena Berni

Wellcome Trust (105568/Z/14/Z)

  • Jimena Berni

Max-Planck-Gesellschaft

  • Marina E Wosniack
  • Julijana Gjorgjieva

Alexander von Humboldt-Stiftung

  • Marina E Wosniack

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wosniack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,577
    views
  • 234
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina E Wosniack
  2. Dylan Festa
  3. Nan Hu
  4. Julijana Gjorgjieva
  5. Jimena Berni
(2022)
Adaptation of Drosophila larva foraging in response to changes in food resources
eLife 11:e75826.
https://doi.org/10.7554/eLife.75826

Share this article

https://doi.org/10.7554/eLife.75826

Further reading

    1. Neuroscience
    Zeming Fang, Meihua Zhao ... Ru-Yuan Zhang
    Research Article

    Previous studies on reinforcement learning have identified three prominent phenomena: (1) individuals with anxiety or depression exhibit a reduced learning rate compared to healthy subjects; (2) learning rates may increase or decrease in environments with rapidly changing (i.e. volatile) or stable feedback conditions, a phenomenon termed learning rate adaptation; and (3) reduced learning rate adaptation is associated with several psychiatric disorders. In other words, multiple learning rate parameters are needed to account for behavioral differences across participant populations and volatility contexts in this flexible learning rate (FLR) model. Here, we propose an alternative explanation, suggesting that behavioral variation across participant populations and volatile contexts arises from the use of mixed decision strategies. To test this hypothesis, we constructed a mixture-of-strategies (MOS) model and used it to analyze the behaviors of 54 healthy controls and 32 patients with anxiety and depression in volatile reversal learning tasks. Compared to the FLR model, the MOS model can reproduce the three classic phenomena by using a single set of strategy preference parameters without introducing any learning rate differences. In addition, the MOS model can successfully account for several novel behavioral patterns that cannot be explained by the FLR model. Preferences for different strategies also predict individual variations in symptom severity. These findings underscore the importance of considering mixed strategy use in human learning and decision-making and suggest atypical strategy preference as a potential mechanism for learning deficits in psychiatric disorders.

    1. Neuroscience
    Minsik Yun, Do-Hyoung Kim ... Young-Joon Kim
    Research Article

    In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.