The m6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells

  1. Fugui Niu
  2. Peng Han
  3. Jian Zhang
  4. Yuanchu She
  5. Lixin Yang
  6. Jun Yu
  7. Mengru Zhuang
  8. Kezhen Tang
  9. Yuwei Shi
  10. Baisheng Yang
  11. Chunqiao Liu
  12. Bo Peng  Is a corresponding author
  13. Sheng-Jian Ji  Is a corresponding author
  1. Southern University of Science and Technology, China
  2. Chinese Academy of Sciences, China
  3. Sun Yat-sen University, China
  4. Fudan University, China

Abstract

The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here we find that the m6A reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.

Data availability

The RIP-seq data have been deposited to the Gene Expression Omnibus (GEO) with accession number GSE145390. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD017775.

The following data sets were generated

Article and author information

Author details

  1. Fugui Niu

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Peng Han

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jian Zhang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuanchu She

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lixin Yang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Yu

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Mengru Zhuang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kezhen Tang

    Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuwei Shi

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Baisheng Yang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chunqiao Liu

    Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Bo Peng

    Department of Neurosurgery, Fudan University, Shanghai, China
    For correspondence
    peng@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4183-5939
  13. Sheng-Jian Ji

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    jisj@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3380-258X

Funding

National Natural Science Foundation of China (31871038)

  • Sheng-Jian Ji

National Natural Science Foundation of China (32170955)

  • Sheng-Jian Ji

National Natural Science Foundation of China (31922027)

  • Bo Peng

National Natural Science Foundation of China (32170958)

  • Bo Peng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All experiments using mice were carried out following the animal protocols approved by the Laboratory Animal Welfare and Ethics Committee of Southern University of Science and Technology (approval numbers: SUSTC-JY2017004, SUSTC-JY2019081).

Version history

  1. Received: November 24, 2021
  2. Preprint posted: December 7, 2021 (view preprint)
  3. Accepted: February 16, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Version of Record published: March 9, 2022 (version 2)
  6. Version of Record updated: March 14, 2022 (version 3)
  7. Version of Record updated: April 4, 2022 (version 4)

Copyright

© 2022, Niu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,797
    views
  • 388
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fugui Niu
  2. Peng Han
  3. Jian Zhang
  4. Yuanchu She
  5. Lixin Yang
  6. Jun Yu
  7. Mengru Zhuang
  8. Kezhen Tang
  9. Yuwei Shi
  10. Baisheng Yang
  11. Chunqiao Liu
  12. Bo Peng
  13. Sheng-Jian Ji
(2022)
The m6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells
eLife 11:e75827.
https://doi.org/10.7554/eLife.75827

Share this article

https://doi.org/10.7554/eLife.75827

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.