Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex
Abstract
In everyday behavior, sensory systems are in constant competition for attentional resources, but the cellular and circuit-level mechanisms of modality-selective attention remain largely uninvestigated. We conducted translaminar recordings in mouse auditory cortex (AC) during an audiovisual (AV) attention shifting task. Attending to sound elements in an AV stream reduced both pre-stimulus and stimulus-evoked spiking activity, primarily in deep layer neurons and neurons without spectrotemporal tuning. Despite reduced spiking, stimulus decoder accuracy was preserved, suggesting improved sound encoding efficiency. Similarly, task-irrelevant mapping stimuli during intertrial intervals evoked fewer spikes without impairing stimulus encoding, indicating that attentional modulation generalized beyond training stimuli. Importantly, spiking reductions predicted trial-to-trial behavioral accuracy during auditory attention, but not visual attention. Together, these findings suggest auditory attention facilitates sound discrimination by filtering sound-irrelevant background activity in AC, and that the deepest cortical layers serve as a hub for integrating extramodal contextual information.
Data availability
Physiology and behavior data supporting all figures in this manuscript have been submitted to Dryad with DOI: 10.7272/Q6BV7DVM
-
Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortexDryad Digital Repository, doi:10.7272/Q6BV7DVM.
Article and author information
Author details
Funding
National Institutes of Health (R01NS116598)
- Andrea R Hasenstaub
National Institutes of Health (R01DC014101)
- Andrea R Hasenstaub
National Science Foundation (GFRP)
- Ryan James Morrill
Hearing Research Incorporated
- Andrea R Hasenstaub
Klingenstein Foundation
- Andrea R Hasenstaub
Coleman Memorial Fund
- Andrea R Hasenstaub
National Institutes of Health (F32DC016846)
- James Bigelow
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco.
Copyright
© 2022, Morrill et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,483
- views
-
- 331
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.
-
- Neuroscience
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.