Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation

Abstract

Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3′-UTRs, and it is required for the resolution of the LPS-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.

Data availability

Raw data for RIP-seq and RNA-seq datasets are available in GEO (accession number GSE160191 and GSE160346, respectively). Numerical data from genome-wide experiments and motif analysis are available in supplementary tables 1-6. All blots shown and used for quantifications have been provided as source data.Scripts are available as Supplementary files 9.

The following data sets were generated

Article and author information

Author details

  1. Clara Suñer

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Annarita Sibilio

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Judit Martín

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Chiara Lara Castellazzi

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Oscar Reina

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Dotu

    Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Adrià Caballé

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Elisa Rivas

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Vittorio Calderone

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Juana Díez

    Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Angel R Nebreda

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    For correspondence
    angel.nebreda@irbbarcelona.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7631-4060
  12. Raúl Méndez

    Institute for Research in Biomedicine (IRB), Barcelona, Spain
    For correspondence
    raul.mendez@irbbarcelona.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1952-6905

Funding

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España (BFU2017-83561-P)

  • Raúl Méndez

BBVA Foundation

  • Raúl Méndez

la Caixa" Foundation "

  • Raúl Méndez

Fundación Científica Asociación Española Contra el Cáncer

  • Raúl Méndez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the Euopean Directive 2010/63/EU on the protection of animals used for scientific purposes. All experimental protocols were approved by the Animal Ethics Committee at the Parc Cientific de Barcelona.

Copyright

© 2022, Suñer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,375
    views
  • 305
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clara Suñer
  2. Annarita Sibilio
  3. Judit Martín
  4. Chiara Lara Castellazzi
  5. Oscar Reina
  6. Ivan Dotu
  7. Adrià Caballé
  8. Elisa Rivas
  9. Vittorio Calderone
  10. Juana Díez
  11. Angel R Nebreda
  12. Raúl Méndez
(2022)
Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation
eLife 11:e75873.
https://doi.org/10.7554/eLife.75873

Share this article

https://doi.org/10.7554/eLife.75873

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.