IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model

  1. Niklas Lonnemann
  2. Shirin Hosseini
  3. Melanie Ohm
  4. Robert Geffers
  5. Karsten Hiller
  6. Charles A Dinarello  Is a corresponding author
  7. Martin Korte  Is a corresponding author
  1. Technische Universität Braunschweig, Germany
  2. Helmholtz Centre for Infection Research, Germany
  3. University of Colorado Health, United States

Abstract

The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL‑37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer's disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Niklas Lonnemann

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Shirin Hosseini

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Ohm

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Geffers

    Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Karsten Hiller

    Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles A Dinarello

    Department of Medicine, University of Colorado Health, Aurora, United States
    For correspondence
    dinare333@aol.com
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Korte

    Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    m.korte@tu-bs.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6956-5913

Funding

Deutsche Forschungsgemeinschaft (SFB854)

  • Martin Korte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaoyu Hu, Tsinghua University, China

Ethics

Animal experimentation: All experimental procedures and protocolls were authorized by the animal welfare representative of the TU Braunschweig and the LAVES of the state of Lower Saxony in Germany (Oldenburg, Germany) (33.19-42502-04-16/2170).

Version history

  1. Preprint posted: November 26, 2021 (view preprint)
  2. Received: November 26, 2021
  3. Accepted: August 29, 2022
  4. Accepted Manuscript published: August 30, 2022 (version 1)
  5. Version of Record published: September 16, 2022 (version 2)

Copyright

© 2022, Lonnemann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 879
    Page views
  • 274
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niklas Lonnemann
  2. Shirin Hosseini
  3. Melanie Ohm
  4. Robert Geffers
  5. Karsten Hiller
  6. Charles A Dinarello
  7. Martin Korte
(2022)
IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model
eLife 11:e75889.
https://doi.org/10.7554/eLife.75889

Share this article

https://doi.org/10.7554/eLife.75889

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.