Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons
Abstract
The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs' capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.
Data availability
Tables with all data points used in the figures is available at Open Science Framework: https://osf.io/yxej3/
Article and author information
Author details
Funding
European Research Council (646886)
- Joshua A Goldberg
Israel Science Foundation (2051/20)
- Hagai Bergman
Deutsche Forschungsgemeinschaft (CRC TRR295)
- Hagai Bergman
Israel Science Foundation (154/14)
- Joshua A Goldberg
Israel Science Foundation (155/14)
- Joshua A Goldberg
U.S.-Israel Binational Science Foundation (2017020)
- Joshua A Goldberg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental protocols were conducted in accordance with the NationalInstitutes of Health Guide for the Care and Use of Laboratory Animals, and with the Hebrew University guidelines for the use and care of laboratory animals in research. The experiments adhered to, received prior written approval from and were supervised by the Institutional Animal Care and Use Committee of the Faculty of Medicine, under protocols: MD-16-13518-4 (H.B.) and MD-18-15657-3 (J.A.G.).
Copyright
© 2022, Oz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,220
- views
-
- 259
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
-
- Neuroscience
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting ‘hinge’ region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.