Invariant neural subspaces maintained by feedback modulation

  1. Laura B Naumann  Is a corresponding author
  2. Joram Keijser
  3. Henning Sprekeler
  1. Technical University of Berlin, Germany

Abstract

Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code will be available under https://github.com/sprekelerlab/feedback_modulation_Naumann21 upon publication.

Article and author information

Author details

  1. Laura B Naumann

    Technical University of Berlin, Berlin, Germany
    For correspondence
    laurabella.naumann@bccn-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7919-7349
  2. Joram Keijser

    Technical University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Henning Sprekeler

    Technical University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0690-3553

Funding

No external funding was received for this work.

Reviewing Editor

  1. Srdjan Ostojic, Ecole Normale Superieure Paris, France

Publication history

  1. Preprint posted: November 1, 2021 (view preprint)
  2. Received: December 3, 2021
  3. Accepted: April 6, 2022
  4. Accepted Manuscript published: April 20, 2022 (version 1)
  5. Version of Record published: May 13, 2022 (version 2)

Copyright

© 2022, Naumann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,446
    Page views
  • 269
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura B Naumann
  2. Joram Keijser
  3. Henning Sprekeler
(2022)
Invariant neural subspaces maintained by feedback modulation
eLife 11:e76096.
https://doi.org/10.7554/eLife.76096

Further reading

    1. Neuroscience
    Abraham Katzen, Hui-Kuan Chung ... Shawn R Lockery
    Research Article Updated

    In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potentials are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a very small nervous system sets a new lower bound on the computational requirements for utility maximization and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution in this organism.

    1. Neuroscience
    Yuan-hao Wu, Ella Podvalny, Biyu J He
    Research Article Updated

    While there is a wealth of knowledge about core object recognition—our ability to recognize clear, high-contrast object images—how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla (7T) fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.