Meta-research: Justifying career disruption in funding applications, a survey of Australian researchers
Abstract
Background: When researchers' careers are disrupted by life events-such as illness or childbirth-they often need to take extended time off. This creates a gap in their research output that can reduce their chances of winning funding. In Australia, applicants can disclose their career disruptions and peer reviewers are instructed to make appropriate adjustments. However, it is not clear if and how applicants use career disruption sections or how reviewers adjust and if they do it consistently.
Methods: To examine career disruption, we used surveys of the Australian health and medical research community. We used both a random sample of Australian authors on PubMed and a non-random convenience sample.
Results: Respondents expressed concerns that sharing information on career disruption would harm their chances of being funded, with 13% saying they have medical or social circumstances but would not include it in their application, with concerns about appearing 'weak'. Women were more reluctant to include disruption. There was inconsistency in how disruption was adjusted for, with less time given for those with depression compared with caring responsibilities, and less time given for those who did not provide medical details of their disruption.
Conclusions: The current system is likely not adequately adjusting for career disruption and this may help explain the ongoing funding gap for senior women in Australia.
Funding: National Health and Medical Research Council Senior Research Fellowship (Barnett).
Data availability
All data and code are openly available here https://github.com/agbarnett/career_disruption
Article and author information
Author details
Funding
National Health and Medical Research Council (APP1117784)
- Adrian Barnett
National Health and Medical Research Council (APP2008313)
- Susanna Cramb
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethics approval was obtained from the Queensland University of Technology human research ethics committee. All participants provided informed consent before completing the survey.
Copyright
© 2022, Barnett et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,599
- views
-
- 148
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
The zinc transporter Slc30a1 plays an essential role in maintaining cellular zinc homeostasis. Despite this, its functional role in macrophages remains largely unknown. Here, we examine the function of Slc30a1 in host defense using mice models infected with an attenuated stain of Salmonella enterica Typhimurium and primary macrophages infected with the attenuated Salmonella. Bulk transcriptome sequencing in primary macrophages identifies Slc30a1 as a candidate in response to Salmonella infection. Whole-mount immunofluorescence and confocal microscopy imaging of primary macrophage and spleen from Salmonella-infected Slc30a1flag-EGFP mice demonstrate Slc30a1 expression is increased in infected macrophages with localization at the plasma membrane and in the cytosol. Lyz2-Cre-driven Slc30a1 conditional knockout mice (Slc30a1fl/fl;Lyz2-Cre) exhibit increased susceptibility to Salmonella infection compared to control littermates. We demonstrate that Slc30a1-deficient macrophages are defective in intracellular killing, which correlated with reduced activation of nuclear factor kappa B and reduction in nitric oxide (NO) production. Notably, the model exhibits intracellular zinc accumulation, demonstrating that Slc30a1 is required for zinc export. We thus conclude that zinc export enables the efficient NO-mediated antibacterial activity of macrophages to control invading Salmonella.
-
- Chromosomes and Gene Expression
- Medicine
LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.