Windborne migration amplifies insect-mediated pollination services

  1. Huiru Jia
  2. Yongqiang Liu
  3. Xaiokang Li
  4. Hui Li
  5. Yunfei Pan
  6. Chaoxing Hu
  7. Xainyong Zhou
  8. Kris AG Wyckhuys
  9. Kongming Wu  Is a corresponding author
  1. Chinese Academy of Agricultural Sciences, China
  2. Guizhou University, China

Abstract

Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics and their ecosystem services implications are poorly understood. In this study, we use long-term (16 yr) trapping records, trajectory analysis and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring-summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances e.g., climate change. Pollen markers and molecular gut-analysis further illuminate how E. balteatus visits min. 1,012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus trans-regional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.

Data availability

The raw MiSeq data from DNA metabarcoding of gut contents has been deposited at NCBI Sequence Read Archive (SRA) under BioProject PRJNA816296. All data supporting the findings of this study are available within the Article, the Extended Data and the Supplementary Information files.

The following data sets were generated

Article and author information

Author details

  1. Huiru Jia

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yongqiang Liu

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xaiokang Li

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui Li

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yunfei Pan

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Chaoxing Hu

    Guizhou University, Guiyang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xainyong Zhou

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kris AG Wyckhuys

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kongming Wu

    Chinese Academy of Agricultural Sciences, Beijing, China
    For correspondence
    wukongming@caas.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3555-4292

Funding

The Laboratory of Lingnan Modern Agriculture Project (NT2021003)

  • Kongming Wu

The Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission (CAAS-XTCX2018022)

  • Kongming Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Youngsung Joo, Chungbuk National University, Republic of Korea

Version history

  1. Received: December 8, 2021
  2. Preprint posted: February 3, 2022 (view preprint)
  3. Accepted: April 11, 2022
  4. Accepted Manuscript published: April 13, 2022 (version 1)
  5. Version of Record published: April 26, 2022 (version 2)

Copyright

© 2022, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 976
    views
  • 212
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huiru Jia
  2. Yongqiang Liu
  3. Xaiokang Li
  4. Hui Li
  5. Yunfei Pan
  6. Chaoxing Hu
  7. Xainyong Zhou
  8. Kris AG Wyckhuys
  9. Kongming Wu
(2022)
Windborne migration amplifies insect-mediated pollination services
eLife 11:e76230.
https://doi.org/10.7554/eLife.76230

Share this article

https://doi.org/10.7554/eLife.76230

Further reading

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.