Windborne migration amplifies insect-mediated pollination services

  1. Huiru Jia
  2. Yongqiang Liu
  3. Xaiokang Li
  4. Hui Li
  5. Yunfei Pan
  6. Chaoxing Hu
  7. Xainyong Zhou
  8. Kris AG Wyckhuys
  9. Kongming Wu  Is a corresponding author
  1. Chinese Academy of Agricultural Sciences, China
  2. Guizhou University, China

Abstract

Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics and their ecosystem services implications are poorly understood. In this study, we use long-term (16 yr) trapping records, trajectory analysis and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring-summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances e.g., climate change. Pollen markers and molecular gut-analysis further illuminate how E. balteatus visits min. 1,012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus trans-regional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.

Data availability

The raw MiSeq data from DNA metabarcoding of gut contents has been deposited at NCBI Sequence Read Archive (SRA) under BioProject PRJNA816296. All data supporting the findings of this study are available within the Article, the Extended Data and the Supplementary Information files.

The following data sets were generated

Article and author information

Author details

  1. Huiru Jia

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yongqiang Liu

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xaiokang Li

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui Li

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yunfei Pan

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Chaoxing Hu

    Guizhou University, Guiyang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xainyong Zhou

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kris AG Wyckhuys

    Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kongming Wu

    Chinese Academy of Agricultural Sciences, Beijing, China
    For correspondence
    wukongming@caas.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3555-4292

Funding

The Laboratory of Lingnan Modern Agriculture Project (NT2021003)

  • Kongming Wu

The Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission (CAAS-XTCX2018022)

  • Kongming Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Youngsung Joo, Chungbuk National University, Republic of Korea

Version history

  1. Received: December 8, 2021
  2. Preprint posted: February 3, 2022 (view preprint)
  3. Accepted: April 11, 2022
  4. Accepted Manuscript published: April 13, 2022 (version 1)
  5. Version of Record published: April 26, 2022 (version 2)

Copyright

© 2022, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,035
    views
  • 220
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huiru Jia
  2. Yongqiang Liu
  3. Xaiokang Li
  4. Hui Li
  5. Yunfei Pan
  6. Chaoxing Hu
  7. Xainyong Zhou
  8. Kris AG Wyckhuys
  9. Kongming Wu
(2022)
Windborne migration amplifies insect-mediated pollination services
eLife 11:e76230.
https://doi.org/10.7554/eLife.76230

Share this article

https://doi.org/10.7554/eLife.76230

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.