Ras/MAPK signalling intensity defines subclonal fitness in a mouse model of hepatocellular carcinoma

Abstract

Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.

Data availability

The RNA-sequencing data have been deposited in the Gene Expression Omnibus (GEO, NCBI) repository, and are accessible through GEO Series accession number GSE180580. Raw data from figures 1 to 5 were deposited on Mendeley data at doi: 10.17632/73nbvs8925.1.

The following data sets were generated

Article and author information

Author details

  1. Anthony Lozano

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Francois-Régis Souche

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Carine Chavey

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Valérie Dardalhon

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Christel Ramirez

    Division of Tumor Biology and Immunology, Oncode Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Serena Vegna

    Division of Tumor Biology and Immunology, Oncode Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Guillaume Desandre

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Anaïs Riviere

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Amal Zine El Aabidine

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Philippe Fort

    Centre de Recherche en Biologie Cellulaire de Montpellier, French National Centre for Scientific Research, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5997-8722
  11. Leila Akkari

    Division of Tumor Biology and Immunology, Oncode Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Urszula Hibner

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    For correspondence
    ula.hibner@igmm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Damien Grégoire

    Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
    For correspondence
    damien.gregoire@igmm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1105-8115

Funding

SIRIC Montpellier Cancer (Grant INCa_Inserm_DGOS_12553)

  • Urszula Hibner

Grant HTE-ITMO Cancer (HTE201610)

  • Urszula Hibner

Association Francaise pour l'Etude du Foie

  • Damien Grégoire

Dutch Cancer Society (KWF 12049/2018-2)

  • Leila Akkari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All reported animal procedures were carried out in accordance with the rules of the FrenchInstitutional Animal Care and Use Committee and European Community Council(2010/63/EU). Animal studies were approved by institutional ethical committee (Comitéd'éthique en expérimentation animale Languedoc-Roussillon (#36)) and by the Ministère del'Enseignement Supérieur, de la Recherche et de l'Innovation (APAFIS#11196-2018090515538313v2).

Copyright

© 2023, Lozano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,133
    views
  • 133
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony Lozano
  2. Francois-Régis Souche
  3. Carine Chavey
  4. Valérie Dardalhon
  5. Christel Ramirez
  6. Serena Vegna
  7. Guillaume Desandre
  8. Anaïs Riviere
  9. Amal Zine El Aabidine
  10. Philippe Fort
  11. Leila Akkari
  12. Urszula Hibner
  13. Damien Grégoire
(2023)
Ras/MAPK signalling intensity defines subclonal fitness in a mouse model of hepatocellular carcinoma
eLife 12:e76294.
https://doi.org/10.7554/eLife.76294

Share this article

https://doi.org/10.7554/eLife.76294

Further reading

    1. Cancer Biology
    Zhenhui Chen, Lu Yu ... Yi Ding
    Research Article

    The prevalence and mortality rates of colorectal cancer (CRC) are increasing worldwide. Radiation resistance hinders radiotherapy, a standard treatment for advanced CRC, leading to local recurrence and metastasis. Elucidating the molecular mechanisms underlying radioresistance in CRC is critical to enhance therapeutic efficacy and patient outcomes. Bioinformatic analysis and tumour tissue examination were conducted to investigate the CPT1A mRNA and protein levels in CRC and their correlation with radiotherapy efficacy. Furthermore, lentiviral overexpression and CRISPR/Cas9 lentiviral vectors, along with in vitro and in vivo radiation experiments, were used to explore the effect of CPT1A on radiosensitivity. Additionally, transcriptomic sequencing, molecular biology experiments, and bioinformatic analyses were employed to elucidate the molecular mechanisms by which CPT1A regulates radiosensitivity. CPT1A was significantly downregulated in CRC and negatively correlated with responsiveness to neoadjuvant radiotherapy. Functional studies suggested that CPT1A mediates radiosensitivity, influencing reactive oxygen species (ROS) scavenging and DNA damage response. Transcriptomic and molecular analyses highlighted the involvement of the peroxisomal pathway. Mechanistic exploration revealed that CPT1A downregulates the FOXM1-SOD1/SOD2/CAT axis, moderating cellular ROS levels after irradiation and enhancing radiosensitivity. CPT1A downregulation contributes to radioresistance in CRC by augmenting the FOXM1-mediated antioxidant response. Thus, CPT1A is a potential biomarker of radiosensitivity and a novel target for overcoming radioresistance, offering a future direction to enhance CRC radiotherapy.

    1. Cancer Biology
    2. Evolutionary Biology
    Arman Angaji, Michel Owusu ... Johannes Berg
    Research Article

    In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.