A CD4+ T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections

  1. Massimo Andreatta
  2. Ariel Tjitropranoto
  3. Zachary Sherman
  4. Michael C Kelly
  5. Thomas Ciucci  Is a corresponding author
  6. Santiago J Carmona  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. University of Rochester, United States
  3. Frederick National Laboratory for Cancer Research, United States

Abstract

CD4+ T cells are critical orchestrators of immune responses against a large variety of pathogens, including viruses. The multifaceted roles of CD4+ T cells, including their help to innate cells, CD8+ T and B cells and their support for long-lived immunity rely on a profound functional heterogeneity. While multiple CD4+ T cell subtypes and their key transcriptional regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune responses remain poorly defined. Taking advantage of single-cell transcriptomics, efficient computational methods, and robust animal models, we characterize the transcriptional landscape of CD4+ T cells responding to self-resolving and chronic viral infections. We build a comprehensive map of virus-specific CD4+ T cells and their evolution over time, and identify six major distinct cell states that are consistently observed in acute and chronic infections in mice. During the course of acute infections, T cell composition progressively changes from effector to memory states, with subtype-specific gene modules and kinetics. Conversely, T cells in persistent infections fail to transition from effector to memory states, and acquire distinct, chronicity-associated transcriptional programs. By single-cell T cell receptor (TCR) sequencing analysis, we characterize the clonal structure of virus-specific CD4+ T cells across individuals and T cell subtypes. We find that virus-specific CD4+ T cell responses are essentially private across individuals and that most T cells differentiate into both Tfh and Th1 subtypes irrespective of their TCR, in both acute and chronic infections. Finally, we show that our CD4+ T cell map can be used as a reference to accurately interpret cell states in external single-cell datasets across tissues and disease models. Overall, this study describes a previously unappreciated level of adaptation of the transcriptional states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T cell analysis, available online at https://spica.unil.ch.

Data availability

Sequence data are deposited in the NCBI Gene Expression Omnibus under accession numbers GSE182320 and GSE200635. The new reference atlas can be downloaded (DOI: 10.6084/m9.figshare.16592693) or accessed via the web portal (https://spica.unil.ch/refs/viral-CD4-T). All code sources are available at https://github.com/carmonalab

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Massimo Andreatta

    Agora Cancer Research Center, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8036-2647
  2. Ariel Tjitropranoto

    Department of Microbiology and Immunology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5525-5236
  3. Zachary Sherman

    Department of Microbiology and Immunology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael C Kelly

    Frederick National Laboratory for Cancer Research, Fregerick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0654-2778
  5. Thomas Ciucci

    Department of Microbiology and Immunology, University of Rochester, Rochester, United States
    For correspondence
    thomasciucci@icloud.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5828-0207
  6. Santiago J Carmona

    Agora Cancer Research Center, University of Lausanne, Lausanne, Switzerland
    For correspondence
    Santiago.Carmona@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2495-0671

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (PZ00P3_180010)

  • Santiago J Carmona

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Carlos Zúñiga-Pflücker, University of Toronto, Sunnybrook Research Institute, Canada

Ethics

Animal experimentation: This study was performed under the protocol UCAR 2020-003 approved by the University of Rochester Committee on Animal Resources.

Version history

  1. Preprint posted: September 20, 2021 (view preprint)
  2. Received: December 13, 2021
  3. Accepted: July 12, 2022
  4. Accepted Manuscript published: July 13, 2022 (version 1)
  5. Version of Record published: July 26, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,952
    views
  • 737
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Massimo Andreatta
  2. Ariel Tjitropranoto
  3. Zachary Sherman
  4. Michael C Kelly
  5. Thomas Ciucci
  6. Santiago J Carmona
(2022)
A CD4+ T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections
eLife 11:e76339.
https://doi.org/10.7554/eLife.76339

Share this article

https://doi.org/10.7554/eLife.76339

Further reading

    1. Immunology and Inflammation
    Xiaozhuo Yu, Wen Zhou ... Yanhong Ji
    Research Article

    The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2’ C-terminus absence in Tp53−/− mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.