Learning cortical representations through perturbed and adversarial dreaming

  1. Nicolas Deperrois  Is a corresponding author
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
  1. University of Bern, Switzerland

Abstract

Humans and other animals learn to extract general concepts from sensory experience without extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous experiences are systemically replayed. However, the characteristic creative nature of dreams suggests that learning semantic representations may go beyond merely replaying previous experiences. We support this hypothesis by implementing a cortical architecture inspired by generative adversarial networks (GANs). Learning in our model is organized across three different global brain states mimicking wakefulness, NREM and REM sleep, optimizing different, but complementary objective functions. We train the model on standard datasets of natural images and evaluate the quality of the learned representations. Our results suggest that generating new, virtual sensory inputs via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness of latent representations. The model provides a new computational perspective on sleep states, memory replay and dreams and suggests a cortical implementation of GANs.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Deep learning benchmark datasets (CIFAR-10 and SVHN) were used for the simulations.We published all code necessary to repeat our experiments in the following repository: https://github.com/NicoZenith/PAD

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Deperrois

    Department of Physiology, University of Bern, Bern, Switzerland
    For correspondence
    nicolas.deperrois@unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7178-1818
  2. Mihai A Petrovici

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2632-0427
  3. Walter Senn

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3622-0497
  4. Jakob Jordan

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3438-5001

Funding

European Commission (604102)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (720270)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (785907)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (945539)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

Universität Bern (Interfaculty Research Cooperation 'Decoding Sleep')

  • Nicolas Deperrois
  • Walter Senn

Universität Heidelberg (Manfred Stärk Foundation)

  • Mihai A Petrovici

Swiss National Science Foundation (Sinergia Grant CRSII5-180316)

  • Walter Senn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Deperrois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,863
    views
  • 690
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Deperrois
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
(2022)
Learning cortical representations through perturbed and adversarial dreaming
eLife 11:e76384.
https://doi.org/10.7554/eLife.76384

Share this article

https://doi.org/10.7554/eLife.76384

Further reading

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.