Learning cortical representations through perturbed and adversarial dreaming

  1. Nicolas Deperrois  Is a corresponding author
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
  1. University of Bern, Switzerland

Abstract

Humans and other animals learn to extract general concepts from sensory experience without extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous experiences are systemically replayed. However, the characteristic creative nature of dreams suggests that learning semantic representations may go beyond merely replaying previous experiences. We support this hypothesis by implementing a cortical architecture inspired by generative adversarial networks (GANs). Learning in our model is organized across three different global brain states mimicking wakefulness, NREM and REM sleep, optimizing different, but complementary objective functions. We train the model on standard datasets of natural images and evaluate the quality of the learned representations. Our results suggest that generating new, virtual sensory inputs via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness of latent representations. The model provides a new computational perspective on sleep states, memory replay and dreams and suggests a cortical implementation of GANs.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Deep learning benchmark datasets (CIFAR-10 and SVHN) were used for the simulations.We published all code necessary to repeat our experiments in the following repository: https://github.com/NicoZenith/PAD

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Deperrois

    Department of Physiology, University of Bern, Bern, Switzerland
    For correspondence
    nicolas.deperrois@unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7178-1818
  2. Mihai A Petrovici

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2632-0427
  3. Walter Senn

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3622-0497
  4. Jakob Jordan

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3438-5001

Funding

European Commission (604102)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (720270)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (785907)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (945539)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

Universität Bern (Interfaculty Research Cooperation 'Decoding Sleep')

  • Nicolas Deperrois
  • Walter Senn

Universität Heidelberg (Manfred Stärk Foundation)

  • Mihai A Petrovici

Swiss National Science Foundation (Sinergia Grant CRSII5-180316)

  • Walter Senn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Deperrois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,887
    views
  • 694
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Deperrois
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
(2022)
Learning cortical representations through perturbed and adversarial dreaming
eLife 11:e76384.
https://doi.org/10.7554/eLife.76384

Share this article

https://doi.org/10.7554/eLife.76384

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.