Learning cortical representations through perturbed and adversarial dreaming

  1. Nicolas Deperrois  Is a corresponding author
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
  1. University of Bern, Switzerland

Abstract

Humans and other animals learn to extract general concepts from sensory experience without extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous experiences are systemically replayed. However, the characteristic creative nature of dreams suggests that learning semantic representations may go beyond merely replaying previous experiences. We support this hypothesis by implementing a cortical architecture inspired by generative adversarial networks (GANs). Learning in our model is organized across three different global brain states mimicking wakefulness, NREM and REM sleep, optimizing different, but complementary objective functions. We train the model on standard datasets of natural images and evaluate the quality of the learned representations. Our results suggest that generating new, virtual sensory inputs via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness of latent representations. The model provides a new computational perspective on sleep states, memory replay and dreams and suggests a cortical implementation of GANs.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Deep learning benchmark datasets (CIFAR-10 and SVHN) were used for the simulations.We published all code necessary to repeat our experiments in the following repository: https://github.com/NicoZenith/PAD

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Deperrois

    Department of Physiology, University of Bern, Bern, Switzerland
    For correspondence
    nicolas.deperrois@unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7178-1818
  2. Mihai A Petrovici

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2632-0427
  3. Walter Senn

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3622-0497
  4. Jakob Jordan

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3438-5001

Funding

European Commission (604102)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (720270)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (785907)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

European Commission (945539)

  • Mihai A Petrovici
  • Walter Senn
  • Jakob Jordan

Universität Bern (Interfaculty Research Cooperation 'Decoding Sleep')

  • Nicolas Deperrois
  • Walter Senn

Universität Heidelberg (Manfred Stärk Foundation)

  • Mihai A Petrovici

Swiss National Science Foundation (Sinergia Grant CRSII5-180316)

  • Walter Senn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna C Schapiro, University of Pennsylvania, United States

Version history

  1. Preprint posted: September 9, 2021 (view preprint)
  2. Received: December 14, 2021
  3. Accepted: March 7, 2022
  4. Accepted Manuscript published: April 6, 2022 (version 1)
  5. Version of Record published: May 5, 2022 (version 2)

Copyright

© 2022, Deperrois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,541
    views
  • 643
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Deperrois
  2. Mihai A Petrovici
  3. Walter Senn
  4. Jakob Jordan
(2022)
Learning cortical representations through perturbed and adversarial dreaming
eLife 11:e76384.
https://doi.org/10.7554/eLife.76384

Share this article

https://doi.org/10.7554/eLife.76384

Further reading

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.