WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae

  1. Josué Flores-Kim
  2. Genevieve S Dobihal
  3. Thomas G Bernhardt
  4. David Z Rudner  Is a corresponding author
  1. Harvard Medical School, United States
  2. Howard Hughes Medical Institute, Harvard Medical School, United States

Abstract

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation during exponential growth and premature lysis. We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active PG synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Josué Flores-Kim

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8282-6647
  2. Genevieve S Dobihal

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7589-1133
  3. Thomas G Bernhardt

    Department of Microbiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3566-7756
  4. David Z Rudner

    Department of Microbiology, Harvard Medical School, Boston, United States
    For correspondence
    rudner@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0236-7143

Funding

National Institute of Allergy and Infectious Diseases (F32AI36431)

  • Josué Flores-Kim

National Institute of Allergy and Infectious Diseases (R01AI083365)

  • Thomas G Bernhardt

Howard Hughes Medical Institute

  • Thomas G Bernhardt

National Institute of General Medical Sciences (R01GM127399)

  • David Z Rudner

National Institute of General Medical Sciences (R01GM086466)

  • David Z Rudner

National Institute of Allergy and Infectious Diseases (R01AI139083)

  • Thomas G Bernhardt
  • David Z Rudner

National Institute of Allergy and Infectious Diseases (T32AI132120)

  • Genevieve S Dobihal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tâm Mignot, CNRS-Aix Marseille University, France

Version history

  1. Received: December 15, 2021
  2. Preprint posted: January 9, 2022 (view preprint)
  3. Accepted: May 19, 2022
  4. Accepted Manuscript published: May 20, 2022 (version 1)
  5. Accepted Manuscript updated: May 24, 2022 (version 2)
  6. Version of Record published: June 20, 2022 (version 3)

Copyright

© 2022, Flores-Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 998
    Page views
  • 249
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josué Flores-Kim
  2. Genevieve S Dobihal
  3. Thomas G Bernhardt
  4. David Z Rudner
(2022)
WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae
eLife 11:e76392.
https://doi.org/10.7554/eLife.76392

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Francesca G Tomasi, Satoshi Kimura ... Matthew K Waldor
    Research Article

    Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of nine modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Valentin Wernet, Marius Kriegler ... Reinhard Fischer
    Research Article Updated

    Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other’s vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells’ oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a ‘monologue’ that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a ‘dialogue’ to initiate hyphal fusion.