The importance of intermediate filaments in the shape maintenance of myoblast model tissues

  1. Irène Nagle
  2. Florence Delort
  3. Sylvie Hénon
  4. Claire Wilhelm
  5. Sabrina Batonnet-Pichon
  6. Myriam Reffay  Is a corresponding author
  1. Université de Paris, CNRS, France
  2. Institute Curie, France

Abstract

Liquid and elastic behaviors of tissues drives their morphology and their response to the environment. They appear as the first insight into tissue mechanics. We explore the role of individual cell properties on spheroids of mouse muscle precursor cells and investigate the role of intermediate filaments on surface tension and Young's modulus. By attening multicellular myoblast aggregates under magnetic constraint, we measure their rigidity and surface tension and show that they act as highly sensitive macroscopic reporters closely related to microscopic local tension and effective adhesion. Shedding light on the major contributions of acto-myosin contractility, actin organization and intercellular adhesions, we reveal the role of a major component of intermediate filaments in the muscle, desmin and its organization, on the macroscopic mechanics of these tissue models. Implicated in the mechanical and shape integrity of cells, intermediate filaments are found to be crucial to the mechanics of unorganized muscle tissue models even at an early stage of differentiation both in terms of elasticity and surface tension.

Data availability

Data supporting the findings of this study are available within the article and its Supplementary information files. Computing resources should be found on Github (https://github.com/mreffay/INagle-MReffay).

Article and author information

Author details

  1. Irène Nagle

    Laboratoire Matière et Systèmes Complexes, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Florence Delort

    Laboratoire Biologie Fonctionnelle et Adaptative, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvie Hénon

    Laboratoire Matière et Systèmes Complexes, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire Wilhelm

    Laboratoire Physico-Chimie Curie, Institute Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabrina Batonnet-Pichon

    Laboratoire Biologie Fonctionnelle et Adaptative, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Myriam Reffay

    Laboratoire Matiere et Systemes Complexes, Université de Paris, CNRS, Paris, France
    For correspondence
    myriam.reffay@u-paris.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3695-2789

Funding

Emergence Ville de Paris (MAGIC)

  • Myriam Reffay

AFM (AFM-22956)

  • Sabrina Batonnet-Pichon

French Defense Procurement Agency

  • Myriam Reffay

Labex Who Am I? (Labex ANR-11-LABX-0071)

  • Myriam Reffay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Version history

  1. Received: December 15, 2021
  2. Preprint posted: December 19, 2021 (view preprint)
  3. Accepted: November 30, 2022
  4. Accepted Manuscript published: December 1, 2022 (version 1)
  5. Version of Record published: December 15, 2022 (version 2)

Copyright

© 2022, Nagle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 637
    views
  • 115
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irène Nagle
  2. Florence Delort
  3. Sylvie Hénon
  4. Claire Wilhelm
  5. Sabrina Batonnet-Pichon
  6. Myriam Reffay
(2022)
The importance of intermediate filaments in the shape maintenance of myoblast model tissues
eLife 11:e76409.
https://doi.org/10.7554/eLife.76409

Share this article

https://doi.org/10.7554/eLife.76409

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Fabien Duveau, Céline Cordier ... Pascal Hersen
    Research Article

    Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.

    1. Physics of Living Systems
    Josep-Maria Armengol-Collado, Livio Nicola Carenza, Luca Giomi
    Research Article Updated

    We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps. Taking advantage of recent progresses toward establishing a general hydrodynamic theory of p-atic liquid crystals, we demonstrate that collectively migrating epithelia feature both nematic (i.e. p = 2) and hexatic (i.e. p = 6) orders, with the former being dominant at large and the latter at small length scales. Such a remarkable multiscale liquid crystal order leaves a distinct signature in the system’s structure factor, which exhibits two different power-law scaling regimes, reflecting both the hexagonal geometry of small cells clusters and the uniaxial structure of the global cellular flow. We support these analytical predictions with two different cell-resolved models of epithelia – i.e. the self-propelled Voronoi model and the multiphase field model – and highlight how momentum dissipation and noise influence the range of fluctuations at small length scales, thereby affecting the degree of cooperativity between cells. Our construction provides a theoretical framework to conceptualize the recent observation of multiscale order in layers of Madin–Darby canine kidney cells and pave the way for further theoretical developments.