The importance of intermediate filaments in the shape maintenance of myoblast model tissues

  1. Irène Nagle
  2. Florence Delort
  3. Sylvie Hénon
  4. Claire Wilhelm
  5. Sabrina Batonnet-Pichon
  6. Myriam Reffay  Is a corresponding author
  1. Université de Paris, CNRS, France
  2. Institute Curie, France

Abstract

Liquid and elastic behaviors of tissues drives their morphology and their response to the environment. They appear as the first insight into tissue mechanics. We explore the role of individual cell properties on spheroids of mouse muscle precursor cells and investigate the role of intermediate filaments on surface tension and Young's modulus. By attening multicellular myoblast aggregates under magnetic constraint, we measure their rigidity and surface tension and show that they act as highly sensitive macroscopic reporters closely related to microscopic local tension and effective adhesion. Shedding light on the major contributions of acto-myosin contractility, actin organization and intercellular adhesions, we reveal the role of a major component of intermediate filaments in the muscle, desmin and its organization, on the macroscopic mechanics of these tissue models. Implicated in the mechanical and shape integrity of cells, intermediate filaments are found to be crucial to the mechanics of unorganized muscle tissue models even at an early stage of differentiation both in terms of elasticity and surface tension.

Data availability

Data supporting the findings of this study are available within the article and its Supplementary information files. Computing resources should be found on Github (https://github.com/mreffay/INagle-MReffay).

Article and author information

Author details

  1. Irène Nagle

    Laboratoire Matière et Systèmes Complexes, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Florence Delort

    Laboratoire Biologie Fonctionnelle et Adaptative, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvie Hénon

    Laboratoire Matière et Systèmes Complexes, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire Wilhelm

    Laboratoire Physico-Chimie Curie, Institute Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabrina Batonnet-Pichon

    Laboratoire Biologie Fonctionnelle et Adaptative, Université de Paris, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Myriam Reffay

    Laboratoire Matiere et Systemes Complexes, Université de Paris, CNRS, Paris, France
    For correspondence
    myriam.reffay@u-paris.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3695-2789

Funding

Emergence Ville de Paris (MAGIC)

  • Myriam Reffay

AFM (AFM-22956)

  • Sabrina Batonnet-Pichon

French Defense Procurement Agency

  • Myriam Reffay

Labex Who Am I? (Labex ANR-11-LABX-0071)

  • Myriam Reffay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Nagle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 804
    views
  • 138
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irène Nagle
  2. Florence Delort
  3. Sylvie Hénon
  4. Claire Wilhelm
  5. Sabrina Batonnet-Pichon
  6. Myriam Reffay
(2022)
The importance of intermediate filaments in the shape maintenance of myoblast model tissues
eLife 11:e76409.
https://doi.org/10.7554/eLife.76409

Share this article

https://doi.org/10.7554/eLife.76409

Further reading

    1. Physics of Living Systems
    M Julia Maristany, Anne Aguirre Gonzalez ... Jerelle A Joseph
    Research Article

    Proteins containing prion-like low complexity domains (PLDs) are common drivers of the formation of biomolecular condensates and are prone to misregulation due to amino acid mutations. Here, we exploit the accuracy of our residue-resolution coarse-grained model, Mpipi, to quantify the impact of amino acid mutations on the stability of 140 PLD mutants from six proteins (hnRNPA1, TDP43, FUS, EWSR1, RBM14, and TIA1). Our simulations reveal the existence of scaling laws that quantify the range of change in the critical solution temperature of PLDs as a function of the number and type of amino acid sequence mutations. These rules are consistent with the physicochemical properties of the mutations and extend across the entire family tested, suggesting that scaling laws can be used as tools to predict changes in the stability of PLD condensates. Our work offers a quantitative lens into how the emergent behavior of PLD solutions vary in response to physicochemical changes of single PLD molecules.

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.