SMAD4 and TGFβ are architects of inverse genetic programs during fate-determination of antiviral CTLs

  1. Karthik Chandiran
  2. Jenny E Suarez-Ramirez
  3. Yinghong Hu
  4. Evan R Jellison
  5. Zenep Ugur
  6. Jun-Siong Low
  7. Bryan McDonald
  8. Susan M M Kaech
  9. Linda S Cauley  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. Emory University, United States
  3. Yale University, Switzerland
  4. Salk Institute for Biological Studies, United States

Abstract

Transforming growth factor β (TGFβ) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing-receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically-modified mice were used to determine how SMAD4 and TGFβ receptor II (TGFβRII) participate in transcriptional-programing of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFb uses a canonical SMAD-dependent signaling pathway to down-regulate Eomesodermin (EOMES), KLRG1 and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1 and CD62L are positively-regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining shows that signaling via SMAD4 promotes formation of terminally-differentiated CTLs that localize in the vasculature. Our data shows that inflammatory molecules play a key role in lineage-determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing-receptors and transcription factors with known functions during memory formation.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE151637Figure 3-source data 1 contain the numerical data used to generate the figures

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Karthik Chandiran

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2118-7946
  2. Jenny E Suarez-Ramirez

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yinghong Hu

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Evan R Jellison

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zenep Ugur

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun-Siong Low

    Department of Immunobiology, Yale University, Bellinzona, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Bryan McDonald

    NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan M M Kaech

    NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Linda S Cauley

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    lcauley@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9488-0341

Funding

National Institute of Allergy and Infectious Diseases (R01 AI123864)

  • Susan M M Kaech
  • Linda S Cauley

American association for Immunologists (AAI Careers in Immunology Fellowship)

  • Linda S Cauley

University of Connecticut Health Center (bridge funding)

  • Linda S Cauley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with protocol AP-200531-0824 approved by the UCONN Health Institutional Animal Care and Use Committee (IACUC). Every effort was made to minimize suffering.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Version history

  1. Preprint posted: December 16, 2021 (view preprint)
  2. Received: December 17, 2021
  3. Accepted: August 5, 2022
  4. Accepted Manuscript published: August 9, 2022 (version 1)
  5. Accepted Manuscript updated: August 11, 2022 (version 2)
  6. Version of Record published: August 24, 2022 (version 3)
  7. Version of Record updated: August 30, 2022 (version 4)

Copyright

© 2022, Chandiran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 680
    Page views
  • 228
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Chandiran
  2. Jenny E Suarez-Ramirez
  3. Yinghong Hu
  4. Evan R Jellison
  5. Zenep Ugur
  6. Jun-Siong Low
  7. Bryan McDonald
  8. Susan M M Kaech
  9. Linda S Cauley
(2022)
SMAD4 and TGFβ are architects of inverse genetic programs during fate-determination of antiviral CTLs
eLife 11:e76457.
https://doi.org/10.7554/eLife.76457

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Roshni Roy, Pei-Lun Kuo ... Luigi Ferrucci
    Research Article Updated

    Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

    1. Immunology and Inflammation
    2. Neuroscience
    René Lemcke, Christine Egebjerg ... Birgitte R Kornum
    Research Article

    Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.