The skeletal muscle circadian clock regulates titin splicing through RBM20

Abstract

Circadian rhythms are maintained by a cell autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMSBmal1-/-) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, LC-MS, and SDS-VAGE. This alteration in titin's spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMSBmal1-/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20, a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant down-regulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE189865

The following data sets were generated

Article and author information

Author details

  1. Lance A Riley

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiping Zhang

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Collin M Douglas

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph M Mijares

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David W Hammers

    Department of Pharmacology and Therapeutics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2129-4047
  6. Christopher A Wolff

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5129-5692
  7. Neil B Wood

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hailey R Olafson

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ping Du

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Siegfried Labeit

    Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael J Previs

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric T Wang

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2655-5525
  13. Karyn A Esser

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    For correspondence
    kaesser@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5791-1441

Funding

NIH Office of the Director (DP5OD017865)

  • Eric T Wang

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR066082,F31AR070625)

  • Karyn A Esser

National Heart Lung and Blood Institute (R01HL157487)

  • Michael J Previs

Fondation Leducq (13CVD04)

  • David W Hammers
  • Siegfried Labeit

The authors declare that the funders had no impact on the design or data collection or writing of this manuscript

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved and monitored by the University of Florida Institutional Animal Care and Use Committee Protocols (IACUC numbers: 201809136, IACUC202100000018).

Copyright

© 2022, Riley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,078
    views
  • 472
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lance A Riley
  2. Xiping Zhang
  3. Collin M Douglas
  4. Joseph M Mijares
  5. David W Hammers
  6. Christopher A Wolff
  7. Neil B Wood
  8. Hailey R Olafson
  9. Ping Du
  10. Siegfried Labeit
  11. Michael J Previs
  12. Eric T Wang
  13. Karyn A Esser
(2022)
The skeletal muscle circadian clock regulates titin splicing through RBM20
eLife 11:e76478.
https://doi.org/10.7554/eLife.76478

Share this article

https://doi.org/10.7554/eLife.76478

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.