The skeletal muscle circadian clock regulates titin splicing through RBM20

Abstract

Circadian rhythms are maintained by a cell autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMSBmal1-/-) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, LC-MS, and SDS-VAGE. This alteration in titin's spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMSBmal1-/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20, a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant down-regulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE189865

The following data sets were generated

Article and author information

Author details

  1. Lance A Riley

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiping Zhang

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Collin M Douglas

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph M Mijares

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David W Hammers

    Department of Pharmacology and Therapeutics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2129-4047
  6. Christopher A Wolff

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5129-5692
  7. Neil B Wood

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hailey R Olafson

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ping Du

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Siegfried Labeit

    Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael J Previs

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric T Wang

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2655-5525
  13. Karyn A Esser

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    For correspondence
    kaesser@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5791-1441

Funding

NIH Office of the Director (DP5OD017865)

  • Eric T Wang

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR066082,F31AR070625)

  • Karyn A Esser

National Heart Lung and Blood Institute (R01HL157487)

  • Michael J Previs

Fondation Leducq (13CVD04)

  • David W Hammers
  • Siegfried Labeit

The authors declare that the funders had no impact on the design or data collection or writing of this manuscript

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved and monitored by the University of Florida Institutional Animal Care and Use Committee Protocols (IACUC numbers: 201809136, IACUC202100000018).

Copyright

© 2022, Riley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,061
    views
  • 470
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lance A Riley
  2. Xiping Zhang
  3. Collin M Douglas
  4. Joseph M Mijares
  5. David W Hammers
  6. Christopher A Wolff
  7. Neil B Wood
  8. Hailey R Olafson
  9. Ping Du
  10. Siegfried Labeit
  11. Michael J Previs
  12. Eric T Wang
  13. Karyn A Esser
(2022)
The skeletal muscle circadian clock regulates titin splicing through RBM20
eLife 11:e76478.
https://doi.org/10.7554/eLife.76478

Share this article

https://doi.org/10.7554/eLife.76478

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.