Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy

  1. Guillaume Ravel
  2. Michel Bergmann
  3. Alain Trubuil
  4. Julien Deschamps
  5. Romain Briandet
  6. Simon Labarthe  Is a corresponding author
  1. INRAE, France
  2. Inria Bordeaux - Sud-Ouest Research Centre, France

Abstract

Biofilms are spatially organized communities of microorganisms embedded in a self-produced organic matrix, conferring to the population emerging properties such as an increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol strategy in particular, but also more generally to decipher ecological drivers of population spatial structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze time-lapse confocal laser scanning images to describe and compare the swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on the inference of a kinetic model of swimmer populations including mechanistic interactions with the host biofilm. After validation on synthetic data, the methodology is implemented on images of three different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer populations by their swimming behavior and provides insights into the mechanisms deployed by the micro-swimmers to adapt their swimming traits to the biofilm matrix.

Data availability

Data and codes have been deposited at https://forgemia.inra.fr/bioswimmers/swim-infer.Labarthe, Simon, Ravel, Guillaume, Deschamps, Julien, & Briandet, Romain. (2022). Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy: compagnon code and data. Zenodo. https://doi.org/10.5281/zenodo.6560673

Article and author information

Author details

  1. Guillaume Ravel

    INRAE, Cestas, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Michel Bergmann

    Inria Bordeaux - Sud-Ouest Research Centre, Talence, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alain Trubuil

    INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Julien Deschamps

    INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Romain Briandet

    INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8123-3492
  6. Simon Labarthe

    INRAE, Cestas, France
    For correspondence
    simon.labarthe@inrae.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5463-7256

Funding

Mathnum department - INRAe

  • Guillaume Ravel

Agence Nationale de la Recherche (ANR-12-ALID-0006)

  • Romain Briandet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Ravel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 973
    views
  • 264
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillaume Ravel
  2. Michel Bergmann
  3. Alain Trubuil
  4. Julien Deschamps
  5. Romain Briandet
  6. Simon Labarthe
(2022)
Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy
eLife 11:e76513.
https://doi.org/10.7554/eLife.76513

Share this article

https://doi.org/10.7554/eLife.76513

Further reading

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.