Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant

  1. Dallas L Mould
  2. Mirjana Stevanovic
  3. Alix Ashare
  4. Daniel Schultz
  5. Deborah A Hogan  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States
  2. Dartmouth-Hitchock Medical Center, United States

Abstract

Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR- derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR- lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR- lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR- cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.

Data availability

All sequencing data is available on the Sequence Read Archive with accession number PRJNA786588 upon publication. All data generated or analyzed and all code used during this study are included in the manuscript or associated files.

The following data sets were generated

Article and author information

Author details

  1. Dallas L Mould

    Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mirjana Stevanovic

    Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alix Ashare

    Department of Medicine, Dartmouth-Hitchock Medical Center, Lebanon, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Schultz

    Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Deborah A Hogan

    Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    dhogan@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6366-2971

Funding

Cystic Fibrosis Foundation (HOGAN19G0)

  • Dallas L Mould
  • Deborah A Hogan

Cystic Fibrosis Foundation (ASHARE20P0)

  • Alix Ashare

Cystic Fibrosis Foundation (STANTO19R0)

  • Daniel Schultz

Cystic Fibrosis Foundation (T32AI007519)

  • Dallas L Mould

National Institutes of Health (R01HL122372)

  • Alix Ashare

National Institutes of Health (GM130454)

  • Mirjana Stevanovic
  • Daniel Schultz

National Institutes of Health (P20GM113132)

  • Dallas L Mould
  • Deborah A Hogan

National Institutes of Health (DK117469)

  • Dallas L Mould
  • Alix Ashare
  • Daniel Schultz
  • Deborah A Hogan

National Institutes of Health (P30CA023108)

  • Dallas L Mould
  • Alix Ashare
  • Daniel Schultz
  • Deborah A Hogan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Mould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,971
    views
  • 440
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dallas L Mould
  2. Mirjana Stevanovic
  3. Alix Ashare
  4. Daniel Schultz
  5. Deborah A Hogan
(2022)
Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant
eLife 11:e76555.
https://doi.org/10.7554/eLife.76555

Share this article

https://doi.org/10.7554/eLife.76555

Further reading

    1. Microbiology and Infectious Disease
    2. Neuroscience
    Aleksandra Prochera, Anoohya N Muppirala ... Meenakshi Rao
    Research Article

    Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

    1. Microbiology and Infectious Disease
    Carley N Gray, Manickam Ashokkumar ... Michael Emerman
    Research Article

    The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.