Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians

  1. Jinfeng Hu
  2. Catherine A Forster
  3. Xing Xu  Is a corresponding author
  4. Qi Zhao
  5. Yiming He
  6. Fenglu Han  Is a corresponding author
  1. China University of Geosciences, China
  2. The George Washington University, United States
  3. Chinese Academy of Sciences, China

Abstract

The dental system of ceratopsids is among the most specialized structure in Dinosauria by the presence of tooth batteries and high-angled wear surfaces. However, the origin of this unique dental system is poorly understood due to a lack of relative knowledge in early-diverging ceratopsians. Here we study the dental system of three earliest-diverging Chinese ceratopsians: Yinlong and Hualianceratops from the early Late Jurassic of Xinjiang and Chaoyangsaurus from the Late Jurassic of Liaoning Province. By micro-computed tomographic analyses, our study has revealed significant new information regarding the dental system, including no more than five replacement teeth in each jaw quadrant; at most one replacement tooth in each alveolus; nearly full resorption of the functional tooth root; and occlusion with low-angled, concave wear facets. Yinlong displays an increase in the number of maxillary alveoli and a decrease in the number of replacement teeth during ontogeny as well as the retention of functional tooth remnants in the largest individual. Chaoyangsaurus and Hualianceratops have slightly more replacement teeth than Yinlong. In general, early-diverging ceratopsians display a relatively slow tooth replacement rate and likely use gastroliths to triturate foodstuffs. The difference in dietary strategy might have influenced the tooth replacement pattern in later-diverging ceratopsians.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary file. We have uploaded the raw micro-CT scanning images of all scanned specimens (all cropped to the dentigerous regions) in Dryad as .TIF or .BMP file format and also the reconstructed 3D files (see the link https://doi.org/10.5061/dryad.9ghx3ffk0). The detailed information of all images is provided in a TXT file 'README_file.txt' saved in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Jinfeng Hu

    School of Earth Sciences, China University of Geosciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9237-9756
  2. Catherine A Forster

    Department of Biological Sciences, The George Washington University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xing Xu

    Chinese Academy of Sciences, Beijing, China
    For correspondence
    xu.xing@ivpp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9948
  4. Qi Zhao

    Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yiming He

    Nanjiang Museum of Paleontology, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fenglu Han

    School of Earth Sciences, China University of Geosciences, Wuhan, China
    For correspondence
    hanfl@cug.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3399-4008

Funding

National Natural Science Foundation of China (41972021)

  • Fenglu Han

National Natural Science Foundation of China (41688103)

  • Xing Xu

National Natural Science Foundation of China (42072008)

  • Qi Zhao

International Partnership Program of Chinese Academy of Sciences (132311KYSB20180016)

  • Xing Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yonatan Sahle, University of Cape Town, South Africa

Publication history

  1. Received: December 29, 2021
  2. Preprint posted: January 19, 2022 (view preprint)
  3. Accepted: April 19, 2022
  4. Accepted Manuscript published: April 20, 2022 (version 1)
  5. Version of Record published: May 4, 2022 (version 2)

Copyright

© 2022, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 652
    Page views
  • 184
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jinfeng Hu
  2. Catherine A Forster
  3. Xing Xu
  4. Qi Zhao
  5. Yiming He
  6. Fenglu Han
(2022)
Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians
eLife 11:e76676.
https://doi.org/10.7554/eLife.76676

Further reading

    1. Evolutionary Biology
    Min Wang, Thomas A Stidham ... Zhonghe Zhou
    Research Article

    The independent movements and flexibility of various parts of the skull, called cranial kinesis, are an evolutionary innovation that is found in living vertebrates only in some squamates and crown birds and is considered to be a major factor underpinning much of the enormous phenotypic and ecological diversity of living birds, the most diverse group of extant amniotes. Compared to the postcranium, our understanding of the evolutionary assemblage of the characteristic modern bird skull has been hampered by sparse fossil records of early cranial materials, with competing hypotheses regarding the evolutionary development of cranial kinesis among early members of the avialans. Here, a detailed three-dimensional reconstruction of the skull of the Early Cretaceous enantiornithine Yuanchuavis kompsosoura allows for its in-depth description, including elements that are poorly known among early-diverging avialans but are central to deciphering the mosaic assembly of features required for modern avian cranial kinesis. Our reconstruction of the skull shows evolutionary and functional conservation of the temporal and palatal regions by retaining the ancestral theropod dinosaurian configuration within the skull of this otherwise derived and volant bird. Geometric morphometric analysis of the palatine suggests that loss of the jugal process represents the first step in the structural modifications of this element leading to the kinetic crown bird condition. The mixture of plesiomorphic temporal and palatal structures together with a derived avialan rostrum and postcranial skeleton encapsulated in Yuanchuavis manifests the key role of evolutionary mosaicism and experimentation in early bird diversification.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Sofia N Moraes, Jordan T Becker ... Reuben S Harris
    Research Article

    Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.