Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection
Abstract
Trained immunity is an innate immune memory response that is induced by primary microbial or sterile stimuli that sensitizes monocytes and macrophages to a secondary pathogenic challenge, reprogramming the host response to infection and inflammatory disease. Nutritional components, such as dietary fatty acids, can act as inflammatory stimuli, but it is unknown if they can act as the primary stimuli in the context of innate immune memory. Here we find mice fed a diet enriched exclusively in saturated fatty acids (SFAs; ketogenic diet; KD) confer a hyper-inflammatory response to systemic lipopolysaccharide (LPS) and increased mortality, independent of diet-induced microbiome and glycemic modulation. We find KD mediates the composition of the hematopoietic stem cell (HSC) compartment, and macrophages derived from the bone marrow of mice fed KD do not have altered baseline inflammation, but enhanced responses to a secondary inflammatory challenge. Lipidomics identified enhanced free palmitic acid (PA) and PA-associated lipids in KD-fed mice serum. We found pre-treatment with physiologically relevant concentrations of PA alone reprograms macrophages to induce a hyper-inflammatory response to secondary challenge with LPS. This response was found to be dependent on the synthesis of ceramide, and reversible when treated with a ceramide synthase inhibitor. In vivo, we found systemic PA confers enhanced inflammation and mortality during an acute inflammatory response to systemic LPS, and this phenotype was not reversible for up to 7 days post-PA-exposure. While PA-treatment is harmful for endotoxemia outcome, we find PA exposure enhanced clearance of Candida albicans in Rag1-/- mice. Further, we show that oleic acid (OA), a mono-unsaturated FA that depletes intracellular ceramide, reverses the PA-induced hyper-inflammatory response shown in macrophages treated with LPS, and reduces severity and mortality of LPS endotoxin stimulation, highlighting the plasticity of SFA-dependent enhanced endotoxemia severity in vivo. These are the first data to implicate enriched dietary SFAs, and specifically PA, in the induction of long-lived innate immune memory that is detrimental during an acute inflammatory response, but beneficial for clearance of pathogens.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting file.
Article and author information
Author details
Funding
NIGMS/NIH (R35GM133804)
- Brooke A Napier
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#IP00002661 & IP00001903) of Oregon Health & Sciences University and Oregon State University (#5091). All animal experiments were approved by the Oregon Health and Sciences University (OHSU) Department of Comparative Medicine or Oregon State University (OSU) Animal Program Office and were overseen by the Institutional Care and Use Committee (IACUC).
Reviewing Editor
- Jos W van der Meer, Radboud University Medical Centre, Netherlands
Publication history
- Preprint posted: June 16, 2021 (view preprint)
- Received: January 4, 2022
- Accepted: October 19, 2022
- Accepted Manuscript published: October 20, 2022 (version 1)
- Version of Record published: November 8, 2022 (version 2)
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 2,378
- Page views
-
- 362
- Downloads
-
- 4
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
-
- Computational and Systems Biology
- Immunology and Inflammation
To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.