Abstract

The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to elevated emergency response. However, neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) inter-burst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing a direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.

Data availability

All data analyzed in this study are included in the manuscript, figures, and figure-supplement. Data analysis code and source code for figures is available at https://github.com/smestern/ichiyama_2022_code. The full list of model parameters are listed in Table 1. Figure source data files contain the numerical data used to generate figures.

Article and author information

Author details

  1. Aoi Ichiyama

    Western University, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel Mestern

    Western University, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5062-6712
  3. Gabriel B Benigno

    Western University, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaela E Scott

    Western University, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian L Allman

    Western University, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Lyle Muller

    Western University, London, Canada
    For correspondence
    lmuller2@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5165-9890
  7. Wataru Inoue

    Western University, London, Canada
    For correspondence
    winoue@robarts.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2438-5123

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-06106)

  • Wataru Inoue

Canadian Institutes of Health Research (PJT-148707)

  • Wataru Inoue

Canada First Research Excellence Fund (BrainsCAN Accelerator)

  • Wataru Inoue

Canada First Research Excellence Fund (BrainsCAN Accelerator)

  • Lyle Muller

Compute Canada

  • Lyle Muller

Canadian Open Neuroscience Platform

  • Samuel Mestern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the Canadian Council on Animal Care guidelines and approved by the University of Western Ontario Animal Use Subcommittee (AUP: 2018-130)

Reviewing Editor

  1. Julie A Kauer, Stanford University, United States

Version history

  1. Received: January 6, 2022
  2. Preprint posted: February 10, 2022 (view preprint)
  3. Accepted: June 17, 2022
  4. Accepted Manuscript published: June 30, 2022 (version 1)
  5. Version of Record published: July 13, 2022 (version 2)

Copyright

© 2022, Ichiyama et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,428
    Page views
  • 355
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aoi Ichiyama
  2. Samuel Mestern
  3. Gabriel B Benigno
  4. Kaela E Scott
  5. Brian L Allman
  6. Lyle Muller
  7. Wataru Inoue
(2022)
State-dependent activity dynamics of hypothalamic stress effector neurons
eLife 11:e76832.
https://doi.org/10.7554/eLife.76832

Further reading

    1. Neuroscience
    Stijn A Nuiten, Jan Willem de Gee ... Simon van Gaal
    Research Article

    Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.

    1. Neuroscience
    Manfred G Kitzbichler, Daniel Martins ... Neil A Harrison
    Research Article Updated

    The relationship between obesity and human brain structure is incompletely understood. Using diffusion-weighted MRI from ∼30,000 UK Biobank participants, we test the hypothesis that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two micro-structural MRI metrics: isotropic volume fraction (ISOVF), an index of free water, and intra-cellular volume fraction (ICVF), an index of neurite density. We observed significant associations with obesity in two coupled but distinct brain systems: a prefrontal/temporal/striatal system associated with ISOVF and a medial temporal/occipital/striatal system associated with ICVF. The ISOVF~WHR system colocated with expression of genes enriched for innate immune functions, decreased glial density, and high mu opioid (MOR) and other neurotransmitter receptor density. Conversely, the ICVF~WHR system co-located with expression of genes enriched for G-protein coupled receptors and decreased density of MOR and other receptors. To test whether these distinct brain phenotypes might differ in terms of their underlying shared genetics or relationship to maps of the inflammatory marker C-reactive Protein (CRP), we estimated the genetic correlations between WHR and ISOVF (rg = 0.026, P = 0.36) and ICVF (rg = 0.112, P < 9×10−4) as well as comparing correlations between WHR maps and equivalent CRP maps for ISOVF and ICVF (P<0.05). These correlational results are consistent with a two-way mechanistic model whereby genetically determined differences in neurite density in the medial temporal system may contribute to obesity, whereas water content in the prefrontal system could reflect a consequence of obesity mediated by innate immune system activation.