Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila

Abstract

Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. Drosophila larval Class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors. However, it is unknown what molecular factors underlie CIII multimodality. Here, we show that the TMEM16/anoctamins subdued and white walker (wwk; CG15270) are required for cold-evoked CT, but not for touch-associated behavior, indicating a conserved role for anoctamins in nociception. We also evidence that CIII neurons make use of atypical depolarizing chloride currents to encode cold, and that overexpression of ncc69-a fly homologue of NKCC1-results in phenotypes consistent with neuropathic sensitization, including behavioral sensitization and neuronal hyperexcitability, making Drosophila CIII neurons a candidate system for future studies of the basic mechanisms underlying neuropathic pain

Data availability

All data generated or analyzed during this study are included in the manuscript. We have plotted all data such that individual data points can be seen. Additionally, we have included heatmap representations of cold-evoked larval behavior for every single larva used in this study (see supplemental figures). Class III neuron-specific transcriptomic data has been deposited in GEO under accession number GSE69353. Accession numbers for sequences used in phylogenetic analysis are presented in the relevant figure. Raw data and sequence files are available in Dryad.

The following previously published data sets were used

Article and author information

Author details

  1. Nathaniel J Himmel

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7876-6960
  2. Akira Sakurai

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2858-1620
  3. Atit A Patel

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shatabdi Bhattacharjee

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jamin M Letcher

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3077-0615
  6. Maggie N Benson

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas R Gray

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6176-005X
  8. Gennady S Cymbalyuk

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1889-5397
  9. Daniel N Cox

    Neuroscience Institute, Georgia State University, Atlanta, United States
    For correspondence
    dcox18@gsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9191-9212

Funding

National Institutes of Health (NS115209)

  • Gennady S Cymbalyuk
  • Daniel N Cox

National Institutes of Health (NS117087)

  • Nathaniel J Himmel

Georgia State University (Honeycutt Fellowship)

  • Nathaniel J Himmel
  • Atit A Patel

Georgia State University (Brains & Behavior Fellowship)

  • Nathaniel J Himmel
  • Atit A Patel
  • Jamin M Letcher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ishmail Abdus-Saboor, Columbia University, United States

Version history

  1. Preprint posted: December 11, 2021 (view preprint)
  2. Received: January 7, 2022
  3. Accepted: January 19, 2023
  4. Accepted Manuscript published: January 23, 2023 (version 1)
  5. Version of Record published: February 7, 2023 (version 2)

Copyright

© 2023, Himmel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,103
    views
  • 175
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathaniel J Himmel
  2. Akira Sakurai
  3. Atit A Patel
  4. Shatabdi Bhattacharjee
  5. Jamin M Letcher
  6. Maggie N Benson
  7. Thomas R Gray
  8. Gennady S Cymbalyuk
  9. Daniel N Cox
(2023)
Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila
eLife 12:e76863.
https://doi.org/10.7554/eLife.76863

Share this article

https://doi.org/10.7554/eLife.76863

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Irini Papazian, Maria Kourouvani ... Lesley Probert
    Research Article

    Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein–Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.

    1. Neuroscience
    Ju-Young Lee, Dahee Jung, Sebastien Royer
    Research Article

    Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.