Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells

  1. Kevin Beier  Is a corresponding author
  1. University of California, Irvine, United States


Dopamine cells in the ventral tegmental area (VTADA) are critical for a variety of motivated behaviors. These cells receive synaptic inputs from over 100 anatomically-defined brain regions, which enables control from a distributed set of inputs across the brain. Extensive efforts have been made to map inputs to VTA cells based on neurochemical phenotype and output site. However, all of these studies have the same fundamental limitation that inputs local to the VTA cannot be properly assessed due to non-Cre-dependent uptake of EnvA-pseudotyped virus. Therefore, the quantitative contribution of local inputs to the VTA, including GABAergic, DAergic, and serotonergic, is not known. Here, I used a modified viral-genetic strategy that enables examination of both local as well as long-range inputs to VTADA cells in mice. I found that nearly half of the total inputs to VTADA cells are located locally, revealing a substantial portion of inputs that have been missed by previous analyses. The majority of inhibition to VTADA cells arises from the substantia nigra pars reticulata, with large contributions from the VTA and the substantia nigra pars compacta. In addition to receiving inputs from VTAGABA neurons, DA neurons are connected with other DA neurons within the VTA as well as the nearby retrorubal field. Lastly, I show that VTADA neurons receive inputs from distributed serotonergic neurons throughout the midbrain and hindbrain, with the majority arising from the dorsal raphe. My study highlights the importance of using the appropriate combination of viral-genetic reagents to unmask the complexity of connectivity relationships to defined cells in the brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Analysis of previously published data are included in Beier et al., Cell 2015 and Beier et al., Cell Reports 2019 (relevant for Figure 2).

The following previously published data sets were used

Article and author information

Author details

  1. Kevin Beier

    Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4934-1338


National Institutes of Health (DP2-AG067666)

  • Kevin Beier

National Institutes of Health (R00-D041445)

  • Kevin Beier

National Institutes of Health (R01-DA054374)

  • Kevin Beier

Tobacco-Related Disease Research Program (T31KT1437)

  • Kevin Beier

Tobacco-Related Disease Research Program (T31IP1426)

  • Kevin Beier

One Mind (OM-5596678)

  • Kevin Beier

Alzheimer's Association (AARG-NTF-20-685694)

  • Kevin Beier

New Vision Research (CCAD2020-002)

  • Kevin Beier

American Parkinson Disease Association (APDA-5589562)

  • Kevin Beier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-18-163) of the University of California, Irvine.. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Jesse H Goldberg, Cornell University, United States

Version history

  1. Received: January 7, 2022
  2. Preprint posted: January 20, 2022 (view preprint)
  3. Accepted: May 20, 2022
  4. Accepted Manuscript published: May 23, 2022 (version 1)
  5. Version of Record published: June 7, 2022 (version 2)


© 2022, Beier

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,549
    Page views
  • 476
  • 3

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin Beier
Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells
eLife 11:e76886.

Further reading

    1. Neuroscience
    Louise Schenberg, Aïda Palou ... Mathieu Beraneck
    Research Article

    The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.

    1. Neuroscience
    Mika Rubinov
    Review Article

    Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.