Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development

Abstract

Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.

Data availability

All raw data has been made available as source data files within the manuscript. All sequencing datasets are available via the Gene Expression Omnibus (GEO) under the accession numbers: GSE179174, GSE190616, and GSE179148.

The following data sets were generated

Article and author information

Author details

  1. Jason T Long

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-0932
  2. Abigail Leinroth

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Yihan Liao

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  4. Yinshi Ren

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  5. Anthony J Mirando

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Tuyet Nguyen

    Program of Developmental and Stem Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8769-9955
  7. Wendi Guo

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  8. Deepika Sharma

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Douglas Rouse

    Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Colleen Wu

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  11. Kathryn Song Eng Cheah

    School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    Kathryn Song Eng Cheah, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0802-8799
  12. Courtney M Karner

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  13. Matthew J Hilton

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    For correspondence
    matthew.hilton@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3165-267X

Funding

NIH/NIAMS (R01AR071722)

  • Matthew J Hilton

NIH/NIAMS (R01AR063071)

  • Matthew J Hilton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mei Wan, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to and approved by the Duke University Institutional Animal Care and Use Committees (IACUC) (A068-20-03).

Version history

  1. Preprint posted: May 18, 2021 (view preprint)
  2. Received: January 10, 2022
  3. Accepted: February 13, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Version of Record published: March 3, 2022 (version 2)

Copyright

© 2022, Long et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,231
    views
  • 609
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Long
  2. Abigail Leinroth
  3. Yihan Liao
  4. Yinshi Ren
  5. Anthony J Mirando
  6. Tuyet Nguyen
  7. Wendi Guo
  8. Deepika Sharma
  9. Douglas Rouse
  10. Colleen Wu
  11. Kathryn Song Eng Cheah
  12. Courtney M Karner
  13. Matthew J Hilton
(2022)
Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development
eLife 11:e76932.
https://doi.org/10.7554/eLife.76932

Share this article

https://doi.org/10.7554/eLife.76932

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.