Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development

Abstract

Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.

Data availability

All raw data has been made available as source data files within the manuscript. All sequencing datasets are available via the Gene Expression Omnibus (GEO) under the accession numbers: GSE179174, GSE190616, and GSE179148.

The following data sets were generated

Article and author information

Author details

  1. Jason T Long

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-0932
  2. Abigail Leinroth

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Yihan Liao

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  4. Yinshi Ren

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  5. Anthony J Mirando

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Tuyet Nguyen

    Program of Developmental and Stem Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8769-9955
  7. Wendi Guo

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  8. Deepika Sharma

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Douglas Rouse

    Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Colleen Wu

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  11. Kathryn Song Eng Cheah

    School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    Kathryn Song Eng Cheah, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0802-8799
  12. Courtney M Karner

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  13. Matthew J Hilton

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    For correspondence
    matthew.hilton@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3165-267X

Funding

NIH/NIAMS (R01AR071722)

  • Matthew J Hilton

NIH/NIAMS (R01AR063071)

  • Matthew J Hilton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to and approved by the Duke University Institutional Animal Care and Use Committees (IACUC) (A068-20-03).

Copyright

© 2022, Long et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,672
    views
  • 653
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Long
  2. Abigail Leinroth
  3. Yihan Liao
  4. Yinshi Ren
  5. Anthony J Mirando
  6. Tuyet Nguyen
  7. Wendi Guo
  8. Deepika Sharma
  9. Douglas Rouse
  10. Colleen Wu
  11. Kathryn Song Eng Cheah
  12. Courtney M Karner
  13. Matthew J Hilton
(2022)
Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development
eLife 11:e76932.
https://doi.org/10.7554/eLife.76932

Share this article

https://doi.org/10.7554/eLife.76932

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.