Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development

Abstract

Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.

Data availability

All raw data has been made available as source data files within the manuscript. All sequencing datasets are available via the Gene Expression Omnibus (GEO) under the accession numbers: GSE179174, GSE190616, and GSE179148.

The following data sets were generated

Article and author information

Author details

  1. Jason T Long

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-0932
  2. Abigail Leinroth

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Yihan Liao

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  4. Yinshi Ren

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  5. Anthony J Mirando

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Tuyet Nguyen

    Program of Developmental and Stem Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8769-9955
  7. Wendi Guo

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  8. Deepika Sharma

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Douglas Rouse

    Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Colleen Wu

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  11. Kathryn Song Eng Cheah

    School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    Kathryn Song Eng Cheah, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0802-8799
  12. Courtney M Karner

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  13. Matthew J Hilton

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    For correspondence
    matthew.hilton@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3165-267X

Funding

NIH/NIAMS (R01AR071722)

  • Matthew J Hilton

NIH/NIAMS (R01AR063071)

  • Matthew J Hilton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to and approved by the Duke University Institutional Animal Care and Use Committees (IACUC) (A068-20-03).

Copyright

© 2022, Long et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,500
    views
  • 633
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Long
  2. Abigail Leinroth
  3. Yihan Liao
  4. Yinshi Ren
  5. Anthony J Mirando
  6. Tuyet Nguyen
  7. Wendi Guo
  8. Deepika Sharma
  9. Douglas Rouse
  10. Colleen Wu
  11. Kathryn Song Eng Cheah
  12. Courtney M Karner
  13. Matthew J Hilton
(2022)
Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development
eLife 11:e76932.
https://doi.org/10.7554/eLife.76932

Share this article

https://doi.org/10.7554/eLife.76932

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic domains, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article Updated

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.