Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development

Abstract

Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.

Data availability

All raw data has been made available as source data files within the manuscript. All sequencing datasets are available via the Gene Expression Omnibus (GEO) under the accession numbers: GSE179174, GSE190616, and GSE179148.

The following data sets were generated

Article and author information

Author details

  1. Jason T Long

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-0932
  2. Abigail Leinroth

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Yihan Liao

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  4. Yinshi Ren

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  5. Anthony J Mirando

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Tuyet Nguyen

    Program of Developmental and Stem Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8769-9955
  7. Wendi Guo

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  8. Deepika Sharma

    Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Douglas Rouse

    Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Colleen Wu

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  11. Kathryn Song Eng Cheah

    School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    Kathryn Song Eng Cheah, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0802-8799
  12. Courtney M Karner

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  13. Matthew J Hilton

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    For correspondence
    matthew.hilton@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3165-267X

Funding

NIH/NIAMS (R01AR071722)

  • Matthew J Hilton

NIH/NIAMS (R01AR063071)

  • Matthew J Hilton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mei Wan, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to and approved by the Duke University Institutional Animal Care and Use Committees (IACUC) (A068-20-03).

Version history

  1. Preprint posted: May 18, 2021 (view preprint)
  2. Received: January 10, 2022
  3. Accepted: February 13, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Version of Record published: March 3, 2022 (version 2)

Copyright

© 2022, Long et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,210
    views
  • 608
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Long
  2. Abigail Leinroth
  3. Yihan Liao
  4. Yinshi Ren
  5. Anthony J Mirando
  6. Tuyet Nguyen
  7. Wendi Guo
  8. Deepika Sharma
  9. Douglas Rouse
  10. Colleen Wu
  11. Kathryn Song Eng Cheah
  12. Courtney M Karner
  13. Matthew J Hilton
(2022)
Hypertrophic chondrocytes serve as a reservoir for marrow associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development
eLife 11:e76932.
https://doi.org/10.7554/eLife.76932

Share this article

https://doi.org/10.7554/eLife.76932

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Vartika Sharma, Nalani Sachan ... Ashim Mukherjee
    Research Article

    The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.