Abstract

During encounters with external threats, survival depends on the engagement of appropriate defensive reactions to minimize harm. There are major clinical implications for identifying the neural circuitry and activation patterns that produce such defensive reactions, as maladaptive overactivation of these circuits underlies pathological human anxiety and fear responses. A compelling body of work has linked activation of large glutamatergic neuronal populations in the midbrain periaqueductal gray (PAG) to defensive reactions such as freezing, flight and threat-induced analgesia. These pioneering data have firmly established that the overarching functional organization axis of the PAG is along anatomically-defined columnar boundaries. Accordingly, broad activation of the dorsolateral column induces flight, while activation of the lateral or ventrolateral (l and vl) columns induces freezing. However, the PAG contains a diverse arrangement of cell types that vary in neurochemical profile and location. How these cell types contribute to defensive responses remains largely unknown, indicating that targeting sparse, genetically-defined populations can lead to a deeper understanding of how the PAG generates a wide array of behaviors. Though several prior works showed that broad excitation of the lPAG or vlPAG causes freezing, we found in mice that activation of lateral and ventrolateral PAG (l/vlPAG) cholecystokinin-expressing (CCK) cells selectively caused flight to safer regions within an environment. Furthermore, inhibition of l/vlPAG-CCK cells reduced avoidance of a predatory threat without altering other defensive behaviors like freezing. Lastly, l/vlPAG-CCK activity decreased when approaching threat and increased during movement to safer locations. Taken together, these data suggest CCK cells are driving threat avoidance states, which are epochs during which mice increase distance from threat and perform evasive escape. In contrast, activating l/vlPAG cells pan-neuronally promoted freezing and these cells were activated near threat. These data underscore the importance of investigating genetically-identified PAG cells. Using this approach, we found a sparse population of CCK-expressing l/vlPAG cells that have distinct and opposing function and neural activation motifs compared to the broader local ensemble defined solely by columnar anatomical boundaries. Thus, in addition to the anatomical columnar architecture of the PAG, the molecular identity of PAG cells may confer an additional axis of functional organization, revealing unexplored functional heterogeneity.

Data availability

Data is available on Dryad: https://doi.org/10.5068/D12Q32

The following data sets were generated

Article and author information

Author details

  1. Mimi Q La-Vu

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ekayana Sethi

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Maesta-Pereira

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter J Schuette

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brooke C Tobias

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2043-9523
  6. Fernando MCV Reis

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Weisheng Wang

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anita Torossian

    Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amy Bishop

    Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Saskia J Leonard

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lilly Lin

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Catherine M Cahill

    Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Avishek Adhikari

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    avi@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9187-9211

Funding

National Institute of Mental Health (R00 MH106649)

  • Avishek Adhikari

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23092-3)

  • Fernando MCV Reis

Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/08668-1)

  • Fernando MCV Reis

National Science Foundation (NSF-GRFP DGE-1650604)

  • Peter J Schuette

National Institute of Mental Health (R01 MH119089)

  • Avishek Adhikari

National Institute of Mental Health (F31 MH121050-01A1)

  • Mimi Q La-Vu

Achievement Rewards for College Scientists Foundation

  • Mimi Q La-Vu

Brain and Behavior Research Foundation (22663)

  • Avishek Adhikari

Brain and Behavior Research Foundation (27654)

  • Fernando MCV Reis

Brain and Behavior Research Foundation (27780)

  • Weisheng Wang

UCLA Health System (UCLA Affiliates fellowship)

  • Peter J Schuette

Hellman Foundation

  • Avishek Adhikari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures conformed to guidelines established by the National Institutes of Health and have been approved by the University of California, Los Angeles Institutional Animal Care and Use Committee (protocol #2017-011) .

Copyright

© 2022, La-Vu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,040
    views
  • 466
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mimi Q La-Vu
  2. Ekayana Sethi
  3. Sandra Maesta-Pereira
  4. Peter J Schuette
  5. Brooke C Tobias
  6. Fernando MCV Reis
  7. Weisheng Wang
  8. Anita Torossian
  9. Amy Bishop
  10. Saskia J Leonard
  11. Lilly Lin
  12. Catherine M Cahill
  13. Avishek Adhikari
(2022)
Sparse genetically-defined neurons refine the canonical role of periaqueductal gray columnar organization
eLife 11:e77115.
https://doi.org/10.7554/eLife.77115

Share this article

https://doi.org/10.7554/eLife.77115

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.