Co-Cultures: Growing together gives more rice and aquatic food

Allowing aquatic organisms to grow in rice fields – a practice called co-culture – increases rice yields while maintaining soil fertility and reducing weeds.
  1. Jian Liu
  2. Siri Caspersen
  3. Jean WH Yong  Is a corresponding author
  1. School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Canada
  2. Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Sweden

When you eat rice with fish – or rice with crab or shrimp – you probably do not think about where the food came from. And if you do, you probably think that the rice grew in a paddy field, while the fish, crab or shrimp were caught in the sea. However, this may only be partially true. Systems for growing rice and various aquatic animals together have existed for over 1,200 years, but the practice of ‘co-culture’ has only recently gained the attention of the major rice-producing nations and the scientific community (Xie et al., 2011).

Rice is one of the most widely consumed grains in the world and is grown in more than 100 countries. It is a staple food source for over half of the world’s population and of upmost importance for lower income countries in Asia, Latin America and Africa (Bashir et al., 2020). Climate change, declining natural resources and an ever-growing population put immense pressure on both increasing yields and reducing the environmental footprint of rice (Hu et al., 2016; Ahmed and Turchini, 2021). Global trends are thus moving towards sustainable and organic management of biological resources (Chen et al., 2014; Muller et al., 2017). Strategic coupling of terrestrial and aquatic ecosystems, such as growing crops and aquatic animals together, could help meet this target (Ahmed and Turchini, 2021).

Previous research has shown that co-cultures can boost yields, improve soil health and enhance ecosystem services (Mueller et al., 2012; Campanhola and Pandey, 2019). But even though co-culture systems would help optimise the use of land and water resources to produce food – while reducing the environmental impacts associated with rice monocultures – large-scale and long-term data are lacking (Bashir et al., 2020).

Now, in eLife, Xin Chen and colleagues at Zhejiang University and Bioversity International – including Liang Guo and Lufeng Zhao as joint first authors – report new evidence in support of co-cultures with aquatic animals and rice crops (Guo et al., 2022). Between 2017 and 2020, the team conducted three separate field experiments in which rice was grown with either fish, crabs or soft-shelled turtles. Each set-up also included a control experiment, where rice was grown as a monoculture. No agrochemicals were used to control weeds, pests or diseases during the field trials.

Over the four years, the co-cultures demonstrated multiple benefits (Figure 1). Rice yield was consistently higher in fields containing aquatic animals (between 8.7% and 12.1%). Moreover, the team was also able to harvest significant amounts of fish, crab and turtle as food (between 560 and 2660 kg/ha). Co-cultures also had fewer weeds and maintained consistent levels of mineral nutrients (nitrogen and phosphorus) in the soil. Moreover, the breakdown of organic matter happened faster in the co-cultures.

The benefits of co-culture for growing rice.

Guo et al. showed that growing rice with aquatic animals (fish, crabs or turtles) increases rice yield, suppresses the growth of weeds, and maintains the levels of nitrogen and phosphorus in the soil. Growing rice with crabs or turtles was also shown to promote a more efficient use of nitrogen. The photographs show the field before (left) and after (middle) the rice plants were transplanted, and near harvest time (right). The aquatic animals were introduced as juveniles about a week after transplanting and lived with the rice plants throughout the experimental periods.

Animals are instrumental in moving elements, such as carbon, nitrogen and phosphorus, in the environment (Schmitz et al., 2018). To find out whether the biology of a co-cultured animal would affect the growth of rice, Guo et al. carried out three additional, controlled experiments to trace the movement of nitrogen from feed (labelled with stable isotopes) to aquatic animals and the environment.

Analyses of the animal’s food intake revealed that fish and crabs obtained up to half of their diet (50% and 35%, respectively) from the rice fields, consuming algae, phytoplankton or weeds. Turtles relied more on additional feed, and only derived 16% of their food intake naturally. The animals’ wastes and any uneaten feed also increased the nutrient availability for the rice plants: rice plants used up to a third of the nitrogen from the animal feed.

The work of Guo et al. demonstrates clearly how co-cultures could make agriculture more sustainable, by increasing soil fertility and reducing the need for fertilizers or pesticides. Moreover, these coupled systems could also help fight the spread of malaria by introducing natural, co-culturing predators, such as frogs (which eat the mosquitos) and fish (which eat the mosquito larvae), and so contribute towards several ‘Sustainable Development Goals’ of the United Nations (Khatiwada et al., 2016; Campanhola and Pandey, 2019).

More research is needed to better understand the impact of co-culture on greenhouse gas emissions and nutrient pollution (Bashir et al., 2020). Nevertheless, these experiments provide a good foundation for further studies to explore how agriculture can be made more sustainable.


Article and author information

Author details

  1. Jian Liu

    Jian Liu is in the School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4199-1296
  2. Siri Caspersen

    Siri Caspersen is in the Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1033-5483
  3. Jean WH Yong

    Jean WH Yong is in the Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3325-8254


The authors would like to thank SLU Aquaculture and Jordbruksverket for financial support.

Publication history

  1. Version of Record published: February 22, 2022 (version 1)


© 2022, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 978
    Page views
  • 110
  • 1

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Liu
  2. Siri Caspersen
  3. Jean WH Yong
Co-Cultures: Growing together gives more rice and aquatic food
eLife 11:e77202.

Further reading

    1. Ecology
    2. Evolutionary Biology
    Shiri Graff van Creveld, Sacha N Coesel ... E Virginia Armbrust
    Research Article

    Phytoplankton rely on diverse mechanisms to adapt to the decreased iron bioavailability and oxidative stress-inducing conditions of today's oxygenated oceans, including replacement of the iron-requiring ferredoxin electron shuttle protein with a less-efficient iron-free flavodoxin under iron limiting conditions. And yet, diatoms transcribe flavodoxins in high-iron regions in contrast to other phytoplankton. Here, we show that the two clades of flavodoxins present within diatoms exhibit a functional divergence, with only clade II flavodoxins displaying the canonical role in acclimation to iron limitation. We created CRISPR/Cas9 knock-outs of the clade I flavodoxin from the model diatom Thalassiosira pseudonana and found these cell lines are hypersensitive to oxidative stress, while maintaining a wild-type response to iron limitation. Within natural diatom communities, clade I flavodoxin transcript abundance is regulated over the diel cycle rather than in response to iron availability, whereas clade II transcript abundances increase either in iron‑limiting regions or under artificially induced iron-limitation. The observed functional specialization of two flavodoxin variants within diatoms reiterates two major stressors associated with contemporary oceans and illustrates diatom strategies to flourish in diverse aquatic ecosystems.

    1. Ecology
    2. Evolutionary Biology
    Laure Olazcuaga, Raymonde Baltenweck ... Julien Foucaud
    Short Report

    Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds (‘metabolic generalism’) or alternatively by distinct uses of diet-specific compounds (‘multi-host metabolic specialism’)? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.