The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function

Abstract

BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2-deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.

Data availability

RNA-sequencing data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE196530.ATAC-seq data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE212807.Previously published datasets are available on NCBI's Gene Expression Omnibus under the accession number GSE83978 and GSE77857.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shasha Li

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5924-6396
  2. Michael D Bern

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Benpeng Miao

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Changxu Fan

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Xiaoyun Xing

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Takeshi Inoue

    Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
    Competing interests
    No competing interests declared.
  7. Sytse J Piersma

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-3556
  8. Ting Wang

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  9. Marco Colonna

    Department of Pathology and Immunology, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5222-4987
  10. Tomohiro Kurosaki

    Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
    Competing interests
    Tomohiro Kurosaki, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6352-304X
  11. Wayne M Yokoyama

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Allergy and Infectious Diseases (R01-AI129545)

  • Wayne M Yokoyama

National Human Genome Research Institute (R01-HG007175)

  • Ting Wang

National Human Genome Research Institute (U01-HG009391)

  • Ting Wang

National Human Genome Research Institute (U41-HG010972)

  • Ting Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Ethics

Animal experimentation: Mouse studies were conducted in accordance with the institutional ethical guidelines through institutional animal care and use committee (IACUC) protocol that was approved by the Animal Studies Committee of Washington University (#20180293).

Version history

  1. Received: January 24, 2022
  2. Preprint posted: February 14, 2022 (view preprint)
  3. Accepted: October 2, 2022
  4. Accepted Manuscript published: October 3, 2022 (version 1)
  5. Version of Record published: October 13, 2022 (version 2)

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,472
    views
  • 314
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shasha Li
  2. Michael D Bern
  3. Benpeng Miao
  4. Changxu Fan
  5. Xiaoyun Xing
  6. Takeshi Inoue
  7. Sytse J Piersma
  8. Ting Wang
  9. Marco Colonna
  10. Tomohiro Kurosaki
  11. Wayne M Yokoyama
(2022)
The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function
eLife 11:e77294.
https://doi.org/10.7554/eLife.77294

Share this article

https://doi.org/10.7554/eLife.77294

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.