No evidence from complementary data sources of a direct glutamatergic projection from the mouse anterior cingulate area to the hippocampal formation

  1. Lilya Andrianova
  2. Steliana Yanakieva
  3. Gabriella Margetts-Smith
  4. Shivali Kohli
  5. Erica S Brady
  6. John P Aggleton
  7. Michael T Craig  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. Cardiff University, United Kingdom
  3. University of Exeter, United Kingdom

Abstract

The connectivity and interplay between the prefrontal cortex and hippocampus underpin various key cognitive processes, with changes in these interactions being implicated in both neurodevelopmental as well as neurodegenerative conditions. Understanding the precise cellular connections through which this circuit is organised is, therefore, vital for understanding these same processes. Overturning earlier findings, a recent study described a novel excitatory projection from anterior cingulate area to dorsal hippocampus. We sought to validate this unexpected finding using multiple, complementary methods: anterograde and retrograde anatomical tracing, using anterograde and retrograde AAVs, monosynaptic rabies tracing and the Fast Blue classical tracer. Additionally, an extensive data search of the Allen Projection Brain Atlas database was conducted to find the stated projection within any of the deposited anatomical studies, as an independent verification of our own results. However, we failed to find any evidence of a direct, monosynaptic glutamatergic projection from mouse anterior cingulate cortex to the hippocampus proper.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data file have been provided for Figure 3.

Article and author information

Author details

  1. Lilya Andrianova

    School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Steliana Yanakieva

    School of Psychology, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabriella Margetts-Smith

    Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1885-2661
  4. Shivali Kohli

    Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Erica S Brady

    Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. John P Aggleton

    School of Psychology, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael T Craig

    School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    mick.craig@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8481-6709

Funding

Biotechnology and Biological Sciences Research Council (BB/P001475/1)

  • Michael T Craig

Medical Research Council (MR/N0137941/1)

  • Gabriella Margetts-Smith
  • Erica S Brady

Wellcome Trust (108891/B/15/Z)

  • Steliana Yanakieva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All UK-based research was carried out in accordance with the UK Animals (Scientific Procedures) Act 1986, and was subject to local ethical review by the Animal Welfare and Ethical Review Board at the University of Exeter or University of Glasgow. All surgical procedures were carried out using aseptic technique under isoflurane anaesthesia, with additional analgesia provided peri- and post-operatively. Every effort was made to minimise animal suffering.

Copyright

© 2023, Andrianova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,999
    views
  • 256
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lilya Andrianova
  2. Steliana Yanakieva
  3. Gabriella Margetts-Smith
  4. Shivali Kohli
  5. Erica S Brady
  6. John P Aggleton
  7. Michael T Craig
(2023)
No evidence from complementary data sources of a direct glutamatergic projection from the mouse anterior cingulate area to the hippocampal formation
eLife 12:e77364.
https://doi.org/10.7554/eLife.77364

Share this article

https://doi.org/10.7554/eLife.77364

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.