Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis

Abstract

Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hours) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.

Data availability

Sequencing reads are available from NCBI under BioProject accession number: PRJNA777781.

The following data sets were generated

Article and author information

Author details

  1. Sara Silva Pereira

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6590-6626
  2. Mariana De Niz

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6987-6789
  3. Karine Serre

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9152-4739
  4. Marie Ouarné

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4724-4363
  5. Joana E Coelho

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Cláudio A Franco

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2861-3883
  7. Luisa Figueiredo

    Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
    For correspondence
    lmf@medicina.ulisboa.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5752-6586

Funding

European Research Council (771714,679368)

  • Cláudio A Franco
  • Luisa Figueiredo

Human Frontier Science Program (LT000047/2019-L)

  • Mariana De Niz

European Molecular Biology Organization (ALTF 1048-2016)

  • Mariana De Niz

HORIZON EUROPE Marie Sklodowska-Curie Actions (839960)

  • Sara Silva Pereira

Fundaçäo para a Ciéncia e a Tecnologia (CEECIND/03322/2018,CEECIND/00697/2018,CEECIND/04251/2017)

  • Karine Serre
  • Cláudio A Franco
  • Luisa Figueiredo

Fondation Leducq (17CVD03)

  • Cláudio A Franco

Fundaçäo para a Ciéncia e a Tecnologia (IF/00412/2012,EXPL/BEX-BCM/2258/2013,PRECISE-LISBOA-01-0145-FEDER-016394,PTDC/MED-PAT/31639/2017)

  • Cláudio A Franco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier Silvie, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France

Ethics

Animal experimentation: This study was conducted in accordance with EU regulations and ethical approval was obtained from the Animal Ethics Committee of Instituto de Medicina Molecular (AWB_2016_07_LF_Tropism). All surgeries were performed under anaesthesia, and every effort was made to minimize suffering.

Version history

  1. Preprint posted: November 5, 2021 (view preprint)
  2. Received: January 28, 2022
  3. Accepted: July 4, 2022
  4. Accepted Manuscript published: July 5, 2022 (version 1)
  5. Version of Record published: July 18, 2022 (version 2)

Copyright

© 2022, Silva Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,291
    views
  • 288
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Silva Pereira
  2. Mariana De Niz
  3. Karine Serre
  4. Marie Ouarné
  5. Joana E Coelho
  6. Cláudio A Franco
  7. Luisa Figueiredo
(2022)
Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis
eLife 11:e77440.
https://doi.org/10.7554/eLife.77440

Share this article

https://doi.org/10.7554/eLife.77440

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.