A-type FHFs mediate resurgent currents through TTX-resistant voltage-gated sodium channels

  1. Yucheng Xiao  Is a corresponding author
  2. Jonathan W Theile
  3. Agnes Zybura
  4. Yanling Pan
  5. Zhixin Lin
  6. Theodore R Cummins  Is a corresponding author
  1. Indiana University - Purdue University Indianapolis, United States
  2. Icagen, LLC, United States
  3. Indiana University, United States

Abstract

Resurgent currents (INaR) produced by voltage-gated sodium channels are required for many neurons to maintain high-frequency firing, and contribute to neuronal hyperexcitability and disease pathophysiology. Here we show, for the first time, that INaR can be reconstituted in a heterologous system by co-expression of sodium channel α-subunits and A-type fibroblast growth factor homologous factors (FHFs). Specifically, A-type FHFs induces INaR from Nav1.8, Nav1.9 tetrodotoxin-resistant neuronal channels and, to a lesser extent, neuronal Nav1.7 and cardiac Nav1.5 channels. Moreover, we identified the N-terminus of FHF as the critical molecule responsible for A-type FHFs-mediated INaR. Among the FHFs, FHF4A is the most important isoform for mediating Nav1.8 and Nav1.9 INaR. In nociceptive sensory neurons, FHF4A knockdown significantly reduces INaR amplitude and the percentage of neurons that generate INaR, substantially suppressing excitability. Thus, our work reveals a novel molecular mechanism underlying TTX-resistant INaR generation and provides important potential targets for pain treatment.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Yucheng Xiao

    Biology Department, Indiana University - Purdue University Indianapolis, Indianapolis, United States
    For correspondence
    yuchxiao@indiana.edu
    Competing interests
    No competing interests declared.
  2. Jonathan W Theile

    Icagen, LLC, Durham, United States
    Competing interests
    Jonathan W Theile, is affiliated with Icagen, LLC. The author has no financial interests to declare..
  3. Agnes Zybura

    Paul and Carole Stark Neurosciences Research Institute, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  4. Yanling Pan

    Biology Department, Indiana University - Purdue University Indianapolis, Indianapolis, United States
    Competing interests
    No competing interests declared.
  5. Zhixin Lin

    Icagen, LLC, Durham, United States
    Competing interests
    Zhixin Lin, is affiliated with Icagen, LLC. The author has no financial interests to declare..
  6. Theodore R Cummins

    Biology Department, Indiana University - Purdue University Indianapolis, Indianapolis, United States
    For correspondence
    trcummin@iu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9509-6380

Funding

National Institute of Neurological Disorders and Stroke (NS109896)

  • Yucheng Xiao
  • Theodore R Cummins

National Institute of Neurological Disorders and Stroke (NS053422)

  • Theodore R Cummins

Indiana State Department of Health

  • Yucheng Xiao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#SC307R) of the Indiana University - Purdue University Indianapolis.

Copyright

© 2022, Xiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 985
    views
  • 176
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yucheng Xiao
  2. Jonathan W Theile
  3. Agnes Zybura
  4. Yanling Pan
  5. Zhixin Lin
  6. Theodore R Cummins
(2022)
A-type FHFs mediate resurgent currents through TTX-resistant voltage-gated sodium channels
eLife 11:e77558.
https://doi.org/10.7554/eLife.77558

Share this article

https://doi.org/10.7554/eLife.77558

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.