Feedback inhibition underlies new computational functions of cerebellar interneurons

  1. Hunter E Halverson
  2. Jinsook Kim
  3. Andrei Khilkevich
  4. Michael D Mauk
  5. George J Augustine  Is a corresponding author
  1. The University of Texas at Austin, United States
  2. Nanyang Technological University, Singapore

Abstract

The function of a feedback inhibitory circuit between cerebellar Purkinje cells and molecular layer interneurons (MLIs) was defined by combining optogenetics, neuronal activity recordings both in cerebellar slices and in vivo, and computational modeling. Purkinje cells inhibit a subset of MLIs in the inner third of the molecular layer. This inhibition is non-reciprocal, short-range (less than 200 mm) and is based on convergence of 1-2 Purkinje cells onto MLIs. During learning-related eyelid movements in vivo, the activity of a subset of MLIs progressively increases as Purkinje cell activity decreases, with Purkinje cells usually leading the MLIs. Computer simulations indicate that these relationships are best explained by the feedback circuit from Purkinje cells to MLIs and that this feedback circuit plays a central role in making cerebellar learning efficient.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided as Excel files. Source code is available at https://github.com/mauk-lab-utexas/CBMSim

Article and author information

Author details

  1. Hunter E Halverson

    Center for Learning and Memory, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jinsook Kim

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6487-6608
  3. Andrei Khilkevich

    Center for Learning and Memory, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael D Mauk

    Center for Learning and Memory, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George J Augustine

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    For correspondence
    george.augustine@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-7485

Funding

Ministry of Education - Singapore (MOE2016-T2-1-097)

  • George J Augustine

Ministry of Education - Singapore (MOE2017-T3-1-002)

  • George J Augustine

National Institute of Mental Health (MH46904)

  • Michael D Mauk

National Institute of Mental Health (MH74006)

  • Michael D Mauk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice procedures were conducted according to the Institutional Animal Care and Use Committee guidelines of the Biopolis Biological Resource Center (# AUP 18095). Treatment of rabbits and surgical procedures were in accordance with National Institutes of Health guidelines and an institutionally approved animal welfare protocol (AUP 2015-00137). All surgery was performed under anesthesia and every effort was made to minimize suffering.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Version history

  1. Received: February 4, 2022
  2. Preprint posted: March 3, 2022 (view preprint)
  3. Accepted: December 7, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Version of Record published: December 21, 2022 (version 2)

Copyright

© 2022, Halverson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 828
    Page views
  • 161
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hunter E Halverson
  2. Jinsook Kim
  3. Andrei Khilkevich
  4. Michael D Mauk
  5. George J Augustine
(2022)
Feedback inhibition underlies new computational functions of cerebellar interneurons
eLife 11:e77603.
https://doi.org/10.7554/eLife.77603

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.